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determine differentiable structures on the cubic regions that serve as non-overlapping
coordinate charts on these manifolds. It uses solutions to the two- and three-dimensional
biharmonic equations in a sequence of steps that increase the differentiability of the
reference metrics across the interfaces between cubic regions. This method is algorithmic

ﬁ)r'z‘;o-;di;ensional differential manifolds and has been implemented in a computer code that automatically generates these
Numerical methods reference metrics. Examples of three-manifolds constructed in this way are presented here,
Biharmonic equation including representatives from five of the eight Thurston geometrization classes, plus the
Hantzsche-Wendt space well-known Hantzsche-Wendt, the Poincaré dodecahedral space, and the Seifert-Weber
Poincaré dodecahedral space space.

Seifert-Weber space © 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Differentiable manifolds are the mathematical structures on which the differential equations of the physical sciences are
solved to provide descriptions of the universe as we understand it. This paper develops methods that allow these equations
to be solved numerically in a convenient way on a much broader class of manifolds.

In the traditional literature, an n-dimensional differentiable manifold is defined as a space that can be covered by a col-
lection of open sets, plus invertible maps that take each member of this collection onto some open subset of R". In practical
terms, these open subsets in R™ are the coordinate charts used to identify points in the manifold. For points having images
in two coordinate patches, the inferred maps in the overlap regions between the patches must be differentiable. The differ-
entiability of these overlap maps defines the differentiable structure of the manifold. This structure is used to define what
it means for global tensor fields on the manifold to be continuous and differentiable. The existence of differentiable global
tensor fields is fundamental to finding global solutions to the equations of the physical sciences on manifolds. Therefore
having, or if necessary creating, a suitably smooth differentiable structure on a manifold is essential.

The traditional description of a differentiable manifold is difficult to implement numerically in a computer code for
several reasons: Such an implementation must keep track of the exact size and shape of each coordinate patch in R", plus
the exact sizes and shapes of the overlap regions containing points represented in two patches, plus the maps between the
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coordinates in the overlap regions. These structures can of course be designed and implemented in a code for any particular
manifold. However, each case is unique and each case requires a lot of work to design and implement properly. It requires
a great deal of effort even to transform a numerical code designed for use on one manifold into one that can be used on
another. In addition, there does not exist in the literature (so far as we know) a catalog containing the needed information
(i.e. the needed collections of coordinate regions, plus all the needed information about their overlaps, plus the maps
between the overlap regions) that would allow these traditional methods to be implemented in a code in a straightforward
way for a broad collection of three-dimensional manifolds.

An alternative description of a differentiable manifold was introduced in Ref. [1] that is simpler in ways that make it
more suitable for use in a computer code. In this multicube approach the coordinate charts in R" are standardized, requiring
each patch to be a cube of uniform coordinate size and orientation. These coordinate patches are chosen not to overlap in
R", except for points on the boundaries of the cubes. The global coordinates in R" can therefore be used to identify points
globally in these manifolds. Since the coordinate patches have uniform sizes and shapes in this approach, the maps that
identify points on the boundaries between neighboring patches are particularly simple, consisting of a rigid translation that
maps the center of a face into the center of its neighbor’s face, followed by a simple rotation (and/or reflection) that aligns
the two faces in the appropriate way. In three dimensions, the case of primary interest in this paper, the number of possible
rotations/reflections is quite small (just 48), so all the possible maps are easily included in a computer code. It was shown
in Ref. [1] that this multicube structure is sufficiently general to represent any two- or three-dimensional manifold in this
way.

The simplicity of the structures of the coordinate charts and their overlap regions makes it much easier to implement
the multicube description of a manifold in a computer code. In addition, describing manifolds in this way makes it possible
to access and easily make use of published catalogs that contain thousands of three-dimensional manifolds represented by
their triangulations [2-5]. Some of these catalogs include online access to the explicit triangulations for these manifolds [6].
Converting a triangulation into a multicube structure is straightforward, see e.g. Ref. [1]. A computer code that implements
this procedure has been developed as part of this project and is described in some detail in Appendix A. Most of the
manifolds included in this study are based on triangulations given in Ref. [6], and then converted to multicube structures
by this new code. The basic multicube structures constructed in this way do not come with differentiable structures. So the
problem of constructing those differentiable structures-the main focus of this paper-remains.

Since the coordinate patches in a multicube representation do not overlap, it is not possible to construct differentiable
structures on these manifolds in the traditional way. Instead, Ref. [1] showed how these structures could be constructed
using a reference metric. Given a reference metric that is continuous across each interface boundary in a multicube structure,
a simple analytical formula can be used to determine special Jacobians at those boundaries. Those Jacobians can then be
used to define what it means for vector and tensor fields to be continuous across those boundaries. A reference metric
that is both continuous and differentiable (in the appropriate sense) across the interfaces can also be used to define a
covariant derivative that (together with the Jacobians) can be used to determine what it means for vector and tensor fields
to be differentiable across those boundaries. This approach was used to construct differentiable structures on a few simple
three-dimensional manifolds in Ref. [1]. An algorithmic method for constructing the needed reference metrics numerically
for arbitrary two-dimensional manifolds was developed and tested in Ref. [7]. This paper focuses on the more difficult and
complicated problem of developing analogous algorithmic methods for constructing reference metrics on arbitrary three-
dimensional manifolds.

Most of the equations of the physical sciences require fixing some combination of the values and normal derivatives of
the fields at the boundaries of computational domains. This means that a differentiable structure must be present on the
manifold that is capable of defining what it means for fields and their derivatives to be continuous across those boundaries.
For a manifold constructed by the multicube method, this means that a global C! metric is required. The purpose of this
paper is to develop a step-by-step algorithm for constructing global C T metrics on these manifolds. These steps consist of
building a sequence of metrics 8gp, Zap, Zap, and Zqp described in detail in Secs. 2 and 3. The first part of this procedure,
described in Sec. 2, constructs a global C® metric, 8, whose intrinsic parts (i.e., the components that define the intrinsic
metric on a given face) are continuous across the interface boundaries between the cubic regions, and which is free from
conical singularities at the vertices and along the edges of those regions. The first step, described in Sec. 2.1, re-organizes
the multicube structure into a set of overlapping star-shape domains that surround each of the vertices in the multicube
structure. Singularity-free flat metrics are constructed on these star-shaped domains in the second step, described in Sec. 2.2.
These flat metrics are combined together using a special partition of unity to produce a global C? reference metric, &4, in
the third step, described in Sec. 2.3.

In Sec. 3 the CO metric, &g, is transformed into a C! metric g, in three additional steps. These steps build two
additional intermediate metrics, g4 and fgab in Secs. 3.1 and 3.2. In the first of these, Sec. 3.1, a conformal transformation
is applied to &gy that produces a new metric, gqp, that makes all the edges of each cubic region into geodesics. This
transformation also makes one component of the associated extrinsic curvatures I_(g‘;} vanish along the edges. The conformal
factor needed for this step is produced by solving two-dimensional biharmonic equations on each cube face, with boundary

1 The notation g, is often used to represent the physical metric (as determined by solving Einstein’s equation for example). To avoid confusion, that
notation is not used here in the construction of the C! reference metric gy, that is designed only to define the differential structure of the manifold.
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conditions along the edges that enforce the geodesic conditions. The pseudo-spectral numerical methods used to solve those
equations for this study are described in Appendix B. In Sec. 3.2 gauge transformations are performed on the metric gqp
at the interfaces of the cubic regions. The resulting metric gqp has the property that its intrinsic components on each cube
face are identical to those of gup, but the gauge components of the metric on those faces are deformed in a way that makes

all the components of the associated extrinsic curvatures f(c{]g} vanish on all the edges of each cubic region. In Sec. 3.3 the

metric Zqp is adjusted in the interiors of each cubic region (keeping the boundary values fixed) by solving three-dimensional
biharmonic equations whose boundary conditions are chosen to make the extrinsic curvatures I?é‘;} vanish on each cube
face. This g retains the continuity of its intrinsic components across each interface boundary inherited from gqp and Zgp.
The continuity of the intrinsic metric together with the continuity of the extrinsic curvature are the geometric conditions,
often referred to as the Israel junction conditions [8], needed to ensure that the metric 8 is C! across the interface
boundaries.

Section 4 describes a number of three-dimensional manifolds on which C! differentiable structures have been con-
structed for this study using the methods described in Secs. 2 and 3. Numerical convergence of the Israel junction conditions,
the necessary and sufficient conditions that g, be C! across the interface boundaries, is demonstrated for these examples.
Appendix D presents detailed multicube structures for a variety of three-dimensional manifolds, including examples from
the Thurston geometrization classes [9,10] E3, $3, S2 x S!, H2 x S!, and H3. The manifolds studied here include 29 that
were constructed from triangulations given in Ref. [6] using the code described in Appendix A. In addition a few multi-
cube structures were constructed by hand for several well known three-manifolds: including the Poincaré dodecahedral
space [11], Seifert-Weber space [12], and all six compact orientable three-manifolds that admit flat metrics [13,14], includ-
ing the Hantzsche-Wendt space [15]. Section 5 gives a brief summary of the basic methods developed in this paper and
the ways they have been tested numerically. In addition a number of interesting questions and possible extensions of the
current results are outlined.

2. Constructing C? three-dimensional reference metrics

The procedure to create a continuous (C9) three-dimensional reference metric, &ij, on a multicube structure has three
basic steps: In the first, described in Sec. 2.1, the multicube structure is re-organized to create a collection of overlapping
star-shaped domains on the manifold. In the second step, described in Sec. 2.2, flat metrics are constructed in each of these
overlapping domains. In the third step, described in Sec. 2.3, a global CO reference metric, g, is constructed using these
flat metrics and a special partition of unity. Explicit analytic formulas are given in Secs. 2.2 and 2.3 for the C° metric, Zqp,
along with the flat metrics and partition of unity functions used to construct it.

All these steps can be, and have been, implemented in a computer code that automatically generates these C° metrics
using only the multicube structures as input. In the simplest version of this procedure (the one described in most detail
here, and the one presently implemented in our code) all the dihedral angles between the cube faces that meet along a
particular edge are chosen to have the same size. While this simplifying assumption cannot be applied to most multicube
structures, it is general enough that compliant structures have been constructed here on a diverse set of manifolds in Sec. 4
to illustrate these methods.

2.1. Step 1: assembling star-shaped domains

In this first step, the multicube structure consisting of a collection of cubic regions, B4, is enhanced by defining a set
of domains, called the star-shaped domains, Sy, that overlap the boundaries between the primary cubic regions. One star-
shaped domain surrounds each distinct vertex of the multicube structure. It is constructed from (copies of) all the cubic
regions that intersect at that vertex point. (A particular cubic region B4 may be included more than once in a star-shaped
domain if two or more of its vertices are identified with each other.) Each of the star-shaped domains, Sy, has the topology
of an open ball in R3. The index 4 is used to label the cubes B, in the multicube structure, while the index I labels the
star-shaped domains Sj, or equivalently the distinct vertices in the multicube structure. The structures of the individual
star-shaped domains depend on the global properties of the multicube structure, in particular on how many cube vertices
intersect in the manifold at the center of each Sj. Fig. 1 illustrates several examples of star-shaped domains having different
numbers of cubic regions intersecting at their central vertex points.

A code designed to use multicube structures can be enhanced to assemble the S in a fairly straightforward way: Any
multicube structure code must include the cube face identification maps. Starting at one vertex of one cubic region, the
identities of the three cubes whose faces are identified with the faces of B4 adjacent to this vertex are determined from
the multicube maps. This can be done, for example, by following the interface identification maps for points near this vertex
on each of the three faces that meet at that point. Copies of the three cubes identified as neighbors in this way are added
to S;. This identification step is repeated for the adjacent faces of each of the additional cubes, and then iterated until
(copies of) all the cube vertices that intersect the original vertex point are included in S;. Once a star-shaped domain S
is complete, if some cube vertices in the full multicube structure remain un-assigned to the center of some star-shaped
domain, then a new star-shaped domain Sj+1 is constructed around this vertex using the same procedure. The process
terminates when all the cube vertices have been included at the center of some star-shaped domain. There are a finite
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Fig. 1. Examples of star-shaped domains, Sy, in three dimensions consisting of four, six, eight and twenty cubic regions, respectively, that intersect at their
central vertex points. The cubic regions in each example have been distorted so they fit together smoothly with the flat metric of the R? in which they are
shown. One (red colored) cubic region in each example has been made semi-transparent to allow the internal structures of these domains to be seen more
clearly. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 2. Left illustration, 2(a), shows the intersection between the corner of a cubic region and a small sphere centered on the vertex of one of the star-shaped
domains. This sphere is depicted as the dashed (blue) curve, the intersections between this cubic region and the sphere are shown as solid (red) curves.
The dash-dot (green) curves represent the intersections of nearby cubic regions in the star-shaped domain. Right illustration, 2(b), labels the angles that
characterize the spherical triangle formed by the intersection of a cubic region and a small sphere centered at its vertex. The ¥qp), etc. are the dihedral
angles (in the local flat metric) between the faces of this cubic region. These o) are also the angles of the spherical triangle. The 64, etc. are the angles
between the edges of the cubic region. These 64 are also the arc lengths of the sides of the spherical triangle.

number of cube vertices in any multicube structure (that can be used for practical numerical work), so in practice this
process always terminates after a finite number of steps.

2.2. Step 2: constructing semi-local flat metrics

The second step in the procedure to construct global C© reference metrics builds a flat metric in each of the star-shaped
domains, &, introduced in Sec. 2.1. Each S; consists of a cluster of cubes that intersect at its central point. If these cubes
are appropriately distorted into parallelograms (by adjusting the dihedral angles between the cube faces), they can be fitted
together (without overlapping and without leaving gaps between them) to form an isometric subset of R, and thus inherit
a natural flat metric. Fig. 1 illustrates several simple examples of star-shaped domains isometrically embedded in R3.

To understand whether the cubic regions of a multicube structure can always be fitted together in this way, consider
a small two-sphere surrounding the central vertex of S;. This sphere intersects all the cubic regions that meet at this
central point. The intersections of this sphere with the faces and edges of each cube form triangles on this sphere. Fig. 2(a)
illustrates the spherical triangles that result from these intersections. The intersection of one of these cubes, B4, is displayed
as the spherical triangle with solid (red) line edges. The intersections of other nearby cubes in S; are displayed with
dash-dot (green) line edges. Together the intersections from all the cubic regions in S; form a triangulation of this two-
sphere.

Any triangulation on a two-sphere can be realized geometrically in an infinite number of ways. Given any one realization,
an infinite number of others can be created simply by moving the vertices of the triangles around on the sphere by small
amounts (i.e., much smaller than the sizes of the triangles), and then replacing the edges with geodesics (great circles)
between vertices. Each spherical triangle with geodesic edges represents the intersection of a parallelogram (whose dihedral
angles match the angles of the triangle) with the two-sphere. Thus there are an infinite number of ways to construct
distorted parallelograms that fit together in the correct way to represent S; as an isometric subset of R3.

An algorithm designed to compute a flat metric on S; must choose from among the infinite possibilities in some way.
Making and implementing that choice is expected to be a complicated optimization problem that we plan to analyze fully
in a future study. For the purposes of the present study, however, we have chosen to adopt a simple pragmatic approach:
choosing the dihedral angles to have uniform sizes around each edge. This simple approach limits the class of multicube
structures to which it can be applied. However, it is general enough that we have been able to construct compliant examples
(see Sec. 4) from most of the Thurston geometrization classes, plus examples of several well known manifolds like the
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Fig. 3. _Left illustration, 3(a), shows two ne_ighboring triangles in a two-sphere triangulation. The uniform dihedral angle assumption requires v = ¥; and
Y2 = V¥, and this in turn implies ¥3 = Y3 for every pair of neighboring triangles. Right illustration, 3(b), shows the relationship between the dihedral
angle v¥up) between two faces of a cubic region, and the angle between the outward directed normals to the cube faces: i) - fijg) = COS(T — Yjap)) =
— COS(Y{ap))-

Poincaré dodecahedral space [11], Seifert-Weber space [12], and all six compact orientable three-manifolds that admit flat
metrics [13,14], including the Hantzsche-Wendt space [15] (also called E6).

Before proceeding with the details of constructing flat metrics on the S in these simple multicube structures, it will be
helpful to establish some basic notation. The notation 9484 (or more compactly A{«}) is used to refer to the « face of cubic
region B4. The index « can have the values {—x, +x, —y, +y, —z, +z}. The edge of region 34 formed by the intersection
of the A{a} and A{B} faces is referred to as A{« B}, and the vertex formed by the intersections of the A{«}, A{B}, and A{y}
faces is referred to as A{aBy}. The dihedral angle between the A{a} and A{B} faces is denoted Y a(qp;, While the angle
between the axes at the edges of the A{c} face is denoted 0a(y). The Yaqp) are also equal to the angles of the spherical
triangle created by the intersection of cube B4 with a small sphere (see Fig. 2(b)), and the 64(«) are also equal to the arc
lengths of the edges of this triangle.

The uniform dihedral angle spacing assumption adopted here requires the dihedral angles of all the cubic regions that
intersect along an edge to be the same. In addition to being reasonably simple to impose, it has the advantage of imposing a
rigid uniformity that prevents any cubic region from being more distorted than its neighbors. To prevent conical singularities
along the cube edges, the sum of the dihedral angles around each edge must be exactly 2. The uniform dihedral angle
assumption therefore implies that the dihedral angle at the A{«} edge must be given by

2

VA{ap) (1)

Kaw@p)’
where Ka(qp) is the number of cubic regions that intersect along this edge.

The uniform dihedral angle assumption also implies that the triangulations of the two-sphere at the center of a star-
shaped domain, &, must have a special local reflection symmetry. Fig. 3(a) illustrates two neighboring triangles in one of
these triangulations. If the uniform dihedral angle assumption has been imposed then ¥ = 1 = 27 /Ky and ¥y = ¥y =
27 /K>. The spherical geometry analog of the angle-side-angle congruence theorem from Euclidean geometry then implies
that 3 = 3. With the uniform dihedral angle assumption, this means that K3 = I_(g, i.e. the number of edges that meet
at vertex 3 in this triangulation must be the same as the number that meet at vertex, 3, of the neighboring triangle. This
symmetry must apply to every edge of every triangle in the triangulations of the two-spheres at the centers of each star-
shaped domain Sj. Therefore, this simple assumption is quite limiting, and is not satisfied by most two-sphere triangulations
and consequently most multicube structures.

Any open subset of R3 inherits the flat Euclidean metric of R3. Thus any S; constructed from parallelograms whose
dihedral angles satisfy the uniform dihedral angle assumption will naturally inherit a flat metric. The illustration in Fig. 3(b)
shows the relationship between the dihedral angle ¥qp) and the angle between unit normals to the cube faces, fig) =
c{aﬁx for o0 = £x, fip(e) = c[a]§y for o = +y, and figj) = c{aﬁz for o = £z. The constants c(y) are chosen to ensure
that the fis() are the outgoing unit normals. The inner products of the outgoing unit normals are related to the dihedral
angles by ﬁA{a} 'ﬁA{ﬁ] = cos(rr — 1//A{a,g}) = —cosYajap)- The inner products of the coordinate gradients also determine the
coordinate components of the inverse metric: e® — Vx4 . Vx?. Therefore the flat inverse metric, ef"{’aﬁy}. associated with the
vertex A{aBy}, expressed in terms of the local Cartesian coordinates of region 5y, is given by

353&{(1/31/} = eﬂl{)aﬂy} 9a dp,
=02+ 0] + 07 — 2C(e)C(g) COS Y A(ep) Ox Dy
—2C(a)Cly) COSYAfay) x 3z — 2€(p)Cly) COS Ya(py) dy Iz, (2)
where the constants ¢(x; = —C{_x) = C{3y) = —C{—y} = C{42) = —C{—z; = 1 ensure the unit normals are outgoing. In Eq. (2)

o ==X, B ==y and y = +z. These metrics have the correct dihedral angles between coordinate faces to allow them to fit

5
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Table 1
This table gives the coordinates of each of the eight cube vertices Viqpy)
with respect to the center of Bj.

{aBy} Viapy) {aBy) Viapy)

(—x—y—-z0  IL-1,-1,-1) | (—=x—y+2) IL(-1.-1.+1)
(x+y—2z0  JLELAL-D | {(=x+y+2z) S AL+
(+x—y—z} IL+1,-1,-1) | {+x—y+2z} IL(+1.-1.+1)
(+x+y—2)  JLEL+1L,-D | {(+x+y+2  JLEL+1 4D

together smoothly with the metrics in neighboring regions. Since the derivatives of these metrics vanish throughout each
region, they are all flat.

The final step in constructing a flat metric on the S; domain is to show that the intrinsic parts of the metrics constructed
in Eq. (2) are continuous across the interface boundaries between the cubic regions in Sj. Equation (2) shows that these
metrics depend only on the dihedral angles of the edges of the cubic region. The simple uniform dihedral angle assumption
adopted for this study implies the local reflection symmetry of the triangulations described above. This symmetry guarantees
that the dihedral angles of each cubic region B4 are the same as those of the neighboring cubic regions. The metrics in two
neighboring regions will therefore be related to one another by the local reflection symmetry across the interface boundary
between them. It follows that the intrinsic parts of the metrics must be continuous across the interface boundary. In general
the gauge components of the metric will not be continuous when expressed in the Cartesian coordinates of the multicube
structure.

2.3. Step 3: constructing ggp

The next step in our procedure for constructing a reference metric is to build a partition of unity that can be used to
combine the flat metrics from the various overlapping domains into a global non-singular metric that is smooth within
each cubic region, and whose intrinsic parts are continuous across the interfaces with each neighboring region. The needed
partition of unity function uA(aﬂw()_E) > 0 has the value 1 at the A{aBy} vertex of domain By, and falls smoothly to zero
on the faces of B4 that do not intersect this vertex. The uA{aﬁy)(Y() are positive within the star-shaped domain S; centered
on the A{aBy} vertex, and vanish on its outer boundary. They are used as weight functions to compute averages of the
flat inverse metrics ef‘l{’aﬁy) defined on the S; domains in Eq. (2). The inverse of the resulting average, g, is the global C°
reference metric.

First introduce a set of non-negative weight functions, WA{aﬁy}()?) > 0, whose support is centered on the vertex A{aBy}.
In the two-dimensional case [7] simple separable functions of the global Cartesian coordinates were used successfully for
these weight functions. The three-dimensional analogs of those two-dimensional functions are

_ Axa Aya Azp
Watapy) ) =h (AL ) (S ) (S ) 3)

where the index A{aBy} refers to the vertex of the cubic region 34, and L is the coordinate size of the regions. The vectors
AXaapy) = (AXa@py), AYAtapy) AZajapy)) are defined by

AXafapy) =X —Ca = Viapy}, (4)
where X are the global Cartesian coordinates of the multicube structure that are aligned with the cube faces, and where
Ca + 17{0,,3),} are the coordinates of the vertex A{aBy}. The values of C,, the locations of the centers of regions By, are
specified as part of the definition of the multicube structure; and the values of ﬁ{aﬁy}, the positions of the vertices relative
to the centers are given in Table 1. They are the same for all the regions.

The functions h(s) used in Eq. (3) are chosen to have the values h(0) =1 and h(%1) = 0. With the arguments specified
in Eq. (3) this corresponds to setting Wa(qpy) =1 at the vertex point A{aBy}, and Wa(py) =0 on the boundary faces of
Ba that do not intersect this vertex. Each of the functions WA{aﬁy]()?) is also continuous across the A{«}, A{f}, and A{y}
interfaces with the corresponding functions in the neighboring domains centered on this same vertex. We find that the
functions

h(s) = h(—s) = 1 {1 n (1 - sz")z - [1 —(1- |s|)2"]e} , (5)

with integers k > 0 and ¢ > 0, work quite well in practice. Some of these functions are illustrated in Fig. 4, with integer
values in the range that worked best in our numerical tests.

The final task in constructing special partitions of unity for the region B4 is to construct the normalizing functions
Wa (5(')

Wa® = > Wapy)®), (6)
{apy}
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Fig. 4. Examples of the h(s) = %{1 +(1- s2kye m-Qa- |s|)2k]‘} functions defined in Eq. (5) used to construct the partitions of unity for the C° reference
metrics, and in the construction of the C® and C! reference metrics.

where WA(aﬁy](;f) is defined in Eq. (3). These W4 (X) are strictly positive, so they can be used to define the partition of
unity functions:

Waapy) (X)
Wakx)

This normalization ensures that these functions satisfy the inequalities 0 < uA(aﬂy}()?) <1, and also the usual partition of
unity normalization condition

1= Z UA(apy)(X), (8)
{aBy}

for each X in each Bj.
A global reference inverse metric §% (%) for X in region B4 can now be constructed by combining the flat metrics e/‘it{’aﬁy}
defined in Eq. (2) with the partition of unity functions defined in that region by Eq. (7):

éab(i)z Z “A[aﬁy}(k,)e,?‘t{]aﬂy}(i)- 9)
{aBy)

The sum is over the eight vertices of region B4. This inverse metric is positive definite since it is a linear combination of
positive definite inverse metrics, eg?a By using the non-negative weight functions u A{aﬂy}(}). A global continuous reference

(7)

Uafapy)(X) =

metric, 8qp(X), is then obtained by inverting g% (X) at each point X. The metric 8, has continuous intrinsic parts across all
of the multicube interface boundaries because it is constructed from flat metrics and partition of unity functions that are
each appropriately continuous across those interfaces.

3. Constructing a C! three-dimensional reference metric

In this section the CO metric, 8y, constructed in Sec. 2 is transformed into a C! metric in three steps. In the first of
these steps, in Sec. 3.1, a conformal transformation is applied to g,, producing a new metric, gy, that makes all the edges
of each cubic region into geodesics while keeping the intrinsic parts of gy, continuous across the interface boundaries. This
transformation also fixes one component of the associated extrinsic curvatures along the edges: I_(a[g]y“yb =0 where yY is
tangent to the edge. (See Sec. 3.2 for details.) In the second step, in Sec. 3.2, the metric gg is transformed to produce a

new metric, g4, Whose intrinsic components on each cube face are identical to those of g, but whose extrinsic curvatures,

f(é‘;). vanish identically on each edge of each cubic region. In the third step, in Sec. 3.3, the metric g, is adjusted in the
interiors of each cubic region (keeping its boundary values fixed) in such a way that the resulting metric g,, has extrinsic
curvatures kég} that vanish identically on each cube face. The gy metric constructed by these three steps preserves the
continuity of the intrinsic components of the metric g, across each interface boundary. This intrinsic metric continuity
together with the continuity of the extrinsic curvatures across the interface boundaries (which vanish identically on those
boundaries in this case) are the geometric Israel junction conditions [8] needed to ensure that the metric &g is C! across
those interfaces.

The methods used in this section are quite general. In particular, they do not depend on the uniform dihedral angle
assumption used in Sec. 2 to construct gg. The only specialized assumption used here, specifically in Sec. 3.2, requires
that the dihedral angles are constants along each cube edge. This additional assumption is satisfied automatically by the
8q» metrics constructed in Sec. 2 using the uniform dihedral angle assumption, but it will not be satisfied in the most
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general case. All that is required to avoid conical singularities is the sum of the dihedral angles (from each of the cubes
that intersect at an edge) equal 27t at each point along the edge. So the dihedral angle in any one cube may (and perhaps
will) in the general case vary along an edge, so long as the global sum constraint is satisfied. In this general case, the
construction of the C! metrics described here, particularly the parts described in Sec. 3.2, will have to be generalized as
well.

3.1. Step 1: converting g into ggp
This section constructs a conformal factor, e?, that is used to transform the reference metric &, constructed in Sec. 2.3:

8ab = e¢gab- (10)
The geodesic equation for the curve x%(s) in the g, metric is given by

d2x o dxb dx€ A )dx“ (1)
JE— _ — S)—,

ds? be'ds ds ds
where s is an arbitrary parameterization of this curve, where l:‘gc are the Christoffel symbols of the second kind for this
metric, and where A(s) is a parameter dependent function. The idea is to choose a conformal factor e? in Eq. (10) having
two properties: a) it makes each edge of each cubic region into a geodesic of the metric g4, and b) it is continuous across
each cube interface.

Consider the cubic region, B4, whose Cartesian coordinates are labeled x* = {x¥, x#, x¥}, and consider the A{eB} edge
of this region where the A{«} and A{B} faces intersect. This edge is a curve with tangent vector dx?/ds = {0, 0, 1}, where
the parameter s has been chosen to be s = x¥. An equivalent form of this equation, more convenient for these purposes, is
given by
d2xb LF dxP dx¢ AS) 3 dx?
R - — S _
ds? b gs ds Babgs

where the Ty are the Christoffel symbols of the first kind. The three components of this equation can be reduced to

&ab (12)

aygay - %3agyy = A(s) gaya (13)
3y &py — 39p8yy = AG) Zpy, (14)
30y Byy =A(G) Zyy- (15)

As an interesting aside, note that Eq. (13) depends only on the intrinsic metric on face A{B}, and together with Eq. (15)
forms the intrinsic geodesic equation on this face. Similarly Eq. (14) depends only on the intrinsic metric on face A{«}, and
together with Eq. (15) forms the intrinsic geodesic equation on this face. Thus the curve formed by the intersection of two
surfaces is a geodesic of the full three-dimensional space if and only if it is a geodesic of the intrinsic geometry of each
surface separately.

The idea now is to choose a conformal factor ¢ that transforms g, using Eq. (10), so the resulting g, satisfies
Egs. (13)-(15) on the edges of each cubic region. The intrinsic parts of the resulting g, will be continuous across the
interfaces between regions if and only if the conformal factor ¢ is continuous across those interfaces. First set ¢ =0 along
the edges of the cubic region to ensure that gqp is continuous there. In this case Egs. (13)-(15) can be re-written in terms
of gqp and ¢ for points along the A{a B} edge:

aygay - %305@)/}/ - %gyyao@ = A(s) gozy» (16)
Oy &py — 30p8yy — 38yypd = A Epy, (17)
30y &yy =AW &y (18)

The terms involving 9y, ¢ all vanish in these equations because ¢ =0 along this edge. These equations place constraints
on 3¢ and dg¢. In particular, Eq. (18), determines A(s) in terms of g, while Egs. (16) and (17), can be re-written as
boundary conditions for d,¢ along the A{«pB} edge:

28y§ay — a‘xgl’)’ _ g“)’ 8?*@)’}’

Oy Paap) = S , (19)
vy (gw)z
20, 8py —p8 8py 9y 8
38 Plaap) = 04 ﬂgw BeYY ﬂ():é }’)2)/}" (20)
Yy
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Note that these expressions imply that the conformal factor ¢ will not vanish everywhere on the cube faces unless 0 =
faw on the edges, in which case those edges would already be geodesics of the g, metric. Also note that the metric
Zap constructed in Sec. 2 rapidly approaches a constant flat metric at each vertex of the cubic region. It follows that the
connection fabc and the gradient d,¢ all vanish at these vertex points.

The next step is to extend the conformal factor ¢ across the faces of the cubic region 34 in a way that a) satisfies the
boundary conditions given in Egs. (19) and (20) along each edge, and b) ensures that it is continuous across the interface
with the neighboring cubic region. The conformal factor ¢4« on the A{a} face satisfies the boundary conditions ¢aep) =0
and Eq. (20) along the A{«B} edge. Analogous conditions must also be imposed on each edge of this face. Together, these
conditions constitute Dirichlet and Neumann boundary conditions for ¢4(y) on the A{a} face. One convenient way to find
¢A(e) that satisfy these boundary conditions is to solve the bi-harmonic equation for ¢(«) on this face:

(a§‘+za§ a§+3;‘)¢A{a} =0. (21)

Solutions to the bi-harmonic equation are uniquely determined by specifying both Dirichlet and Neumann conditions on the
boundary of a compact domain [16]. This approach can then be used to determine the surface values of ¢ on each face of
each region in the multicube structure. The pseudo-spectral numerical methods used to solve this equation for this study
are described briefly in Appendix B.

The boundary conditions that determine the solution to Eq. (21) only depend on the intrinsic components of the metric,
8pp. &py and gy, on the A{a} face. These intrinsic metric components were constructed to be continuous across this
interface boundary in Sec. 2. It follows that boundary conditions used to determine ¢4(y) will be the same on both sides
of the interface boundary. Since the solution to Eq. (21) with Dirichlet and Neumann boundary conditions is unique [16], it
follows that the ¢4y determined in this way will be the same on both sides of the interface.

The method described above can be used to determine the surface values ¢(o) on each face of each cubic region.
These solutions provide Dirichlet boundary conditions for the full conformal factor ¢4 within each region. The normal
derivatives of ¢4(y) are unconstrained, however, beyond the requirement that those derivatives agree along the edges with
the tangential derivatives from the neighboring faces. The conformal factor ¢ within the cubic region can therefore be
determined in any number of ways. For example, it could be determined by solving the three-dimensional Laplace equation
with the Dirichlet boundary conditions ¢a(q;-

A computationally more efficient approach has been adopted for this study. Begin by defining a set of coordinates s% that
measure the relative distance between a point inside region B4 and the d_, B, face of that region. The s are normalized
so that s§ =0 on the 9,534 face, while s§ =1 on the opposite d_, B, face. In particular

y—c% 1

+x
- L 2

S (22)

x—c* 1

A +y

—t =1, S —
L 2‘ A

where X = (x, y, z) are the global Cartesian coordinates of the multicube structure, ¢4 = (c’/‘p CX, CZA) are the coordinates of
the center, and L is the coordinate size of region 4.

The conformal factor ¢4(} on the A{a} face, constructed by solving Eq. (21), can now be extrapolated into the interior
using the h(s) functions defined in Eq. (5). Consider the extrapolation ¢4 = h(s%) ¢aja}. The @a(e) vanish identically along
the edges because of the boundary conditions used to solve Eq. (21). Therefore the ¢a(«) extrapolated in this way do not
modify the ¢4() on the adjacent faces. It does not modify ¢4(—«} on the opposite face, either, because h(s%) vanishes there.
The complete conformal factor ¢4 in the interior of region 34 can therefore be determined by combining the extrapolations
from all the cube faces:

$a=2 d% =D h(sH)daw. (23)

The resulting ¢4 automatically satisfies the Dirichlet conditions ¢a(y) on each of the faces.

The conditions in Eqs. (19) and (20) ensure that the edges of each cubic region are geodesics of the metric Zq = e? 8yp.
The continuity across the interface boundaries of ¢4 ensures that the global solution for ¢ is continuous across those
boundaries. And this in turn ensures that the intrinsic components of the g,, metric are continuous across all the interface
boundaries as well.

3.2. Step 2: converting gqp into Zqp

Let g, denote the global C° metric constructed in Sec. 3.1. The goal of this second step is to convert g, into a metric
Zap having two important properties: first, the extrinsic curvatures I_(ég} associated with g,p must vanish identically on each

edge of each cubic region; and second, the intrinsic parts of g, must be identical to those of Z,. We note that while g
was constructed to have intrinsic parts that are only C? across the interface boundaries, within each region g, is actually
smooth.
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Consider the interface boundary A{o«} of cubic region By. In the global Cartesian coordinates of our multicube structure,
the boundary A{a} is a level surface of the coordinate x%. The unit normal co-vector field to the foliation of constant x“
surfaces, ﬁf,a}, is given by

A = Nl gz (24)

= = —-1/2 . . = . = .
where N@) = (@} (g"‘"‘) / . The constant €!®} = 41 determines the sign of N/*}, and is chosen to ensure that n({,a} is the

outward directed unit normal on the A{«} face. The extrinsic curvature I_(é‘;} of this surface is given by

Kkled = plieplard g plo) (25)
= PRy (aeRf — A Y (26)
= %I_)l{,a}cl_)l()a} rzl{a}e (Be .E'Cd — J¢ éed — 9y §E‘C) s (27)

where %c is the Z,, metric-compatible covariant derivative, and I:’{a}c is the projection tensor I:’{a}c =85 — r_'l,‘,a}r:ﬂ““. Note
that the term proportional to 8cn({1 - =0 N“"}Z)dx“ in Eq. (26) vanishes identically because P“”"a X% =0.
We define the difference between the g, and the g, metrics, 884, and the associated differences between extrinsic
curvatures, Skég}:
Sgab = gab - gabv (28)
pla) _ pla) _ pla)
3Ky =Ky — Ky (29)
Note that these differences are not necessarily infinitesimal. To ensure that the intrinsic parts of §ab are identical to those
of gu», we choose 58, to be a smooth tensor in the interior of each cubic region that satisfies,

88cd = (30)
on each cube face A{a}. Note that the projection tensor I:’f, 1€ s identical to P
0. Therefore the metric continuity condition on 88, is equivalent to

P{a}cP{a}d

e on A{a} because P},"‘"acx“ = Pé“"acx“ =

PPl 554 =0, (31)

which is easier to enforce since the metric g4, and consequently the normal vector ﬁc{la}, is already known. The condition

that the extrinsic curvature K(b vanishes along each edge of the A{«} face can be expressed as the following condition on
5Ky
7al’d 7al’4
skl = K9, (32)
on each edge of each cube face A{a}.

To determine exactly what restrictions are placed on 88y, by the intrinsic metric and extrinsic curvature continuity
conditions, Eqgs. (31)-(32), we examine those conditions expressed in the Cartesian coordinates {x*,x? x¥} of region Bj.
The Afa} face of this region is defined by an x*=constant surface, while the xf and x” coordinates label points on that
face. In these coordinates the intrinsic metric continuity condition, Eq. (31), implies that all the X and x¥ components of
the metric perturbation vanish everywhere on that face: §ggs = 88, =88y, =0. Similarly on the adjacent A{B} face, all
the x* and X” components of the metric perturbation vanish §gy¢ = 884y = 88y, = 0. It follows that all the components
of §gqp except §8qp must vanish along the A{aB} edge: 68wo = 08wy = 88pp = 88py =38yy =0.

The C° metric g, was constructed so that the dihedral angle between the A{a} and A{B} faces, cos ViAap) =
—g%f/\/gx@gPB, is constant along the edge between these faces. This was done to ensure there is no conical singular-
ity along this edge. To ensure that the gu, metric has no conical singularity there, we keep this dihedral angle fixed in this
metric along this edge as well. This can be done by imposing the additional constraint §gys = 0 along this edge. This makes
all the components 8%y, = 0, and consequently §g%° = 0 which keeps the dihedral angles fixed. Thus the intrinsic metric
continuity conditions, along with the conditions to ensure there are no conical singularities along the edges, require that all
the components of the metric perturbation vanish along each edge: §g, = 0. B

Exact expressions for the xf and x¥ components of the extrinsic curvature I_(L{Ig} on the A{«} face are obtained from
Egs. (27) and (28):

Kig =309 (9, gpp — 205 Zap) + 3111 (94 8 pp — 205 82ap) » (33)
f(é")’,} =31V (30 sy — 9 Zay — y Fap) + 31 (32 0py — 9p 5Zay — Dy 8ap) » (34)
I—(){fay} = %ﬁ[ 1 (3 8yy — 28y Zay) + %E{a}a (3a88yy — 29y 88ay)- (35)

10



L. Lindblom, O. Rinne and N.W. Taylor Journal of Computational Physics 460 (2022) 110957

On the A{aB)} edge, where the A{cr} and A{B)} faces intersect, 8y, = 0, so (®@ =fl®}1e  Consequently Egs. (33)-(35) can
be re-written in the simpler form:

(@) _ %) ) _ 1z _ i

8Ky = Kpg' — Kpg) = 57" (00 58 pp — 205 82ap) (36)
Sle) _ 2le) gl _ 1= _ _ )

3Ky, =Ky, — Ky, = 311 (3a 58y — 9 88ay — 3y 88ap) 37)

SKi) = K — K3} = 1al®9 (3,58, — 20, 88y ) - (38)

Since 68q» = 0 along the A{ap} edge, it follows that 9,68, = 0 there. Since 68ss = 88p) = 68y, =0 everywhere on
the A{a} face, it follows that ds88ss = 968y = 968y, =0 along the A{arpB} edge as well. Finally, 6, on the adjacent
dpBa face represents a perturbation of the intrinsic metric, so d488y) =0 along the A{a8} edge as well. The components
of i!®} in these coordinates are given by iil®}¢ = N{@}{gae@ g*B 52V} 5o the expressions for Skég} from Egs. (36)-(38) can
be simplified further:

51<ﬂﬂ = 1N g% (35, 88pp — 295 88ap) s (39)
Sy = 1 N1 g% (34624, — 0p 82ay) (40)
5K =o. (41)

The analogous expressions for SKéf’, the extrinsic curvature of the adjacent A{B} face, along this edge can be obtained by

interchanging the roles of x¥ and x? in Egs. (39)-(41):

8K = 3 NI g (95 88u — 20u 88ap) @)
8K} =3 NI &P (95 08ay — a 88py) . )
e (44)

These expressions for 81((“} and 5K ) define the required boundary conditions on the derivatives 9,58, along the A{afB}

edge, where the A{a} and A{B} faces intersect. Since 8K$b] must satisfy Eq. (32), we see that these boundary conditions
imply that the gauge components of the metric (i.e. the non-intrinsic components) 68y« 68w g, and 884y, cannot simply be
set to zero on the A{«} face.

The expressions for SK(O(} and 8K)l,ﬂy), Egs. (41) and (44), along the A{aB} edge, imply that no discontinuity in I_({,O;,}
or K{,ﬂy} along this edge can be removed by any §gqp allowed by our constraints. To understand what that means, let

y® be the components of the vector 3, = y“d,. This vector is orthogonal to the surface normals: 0 = nmy“ = n{ﬁ)y“

It follows that I—(i,ay} = y"yb%ﬁ,{f‘} =y, (nf,“)yb) - n,{Ja)y“Vay = —nLa}y“Vayb. Since the metric gqp constructed in

Sec. 3.1 has the property that each edge is a geodesic, y“@ayb = A(XV))/’J (for some function A(x”) along this edge), it

follows that K;,O;,} =0 and similarly Kyy =0 along the A{aB} edge. This component of the extrinsic curvature continuity

{

condition Eq. (32) is therefore satisfied automatically along this edge, so 81(){,0‘1,] = 5K ﬂ} =0 are the appropriate corrections

there.

The right sides of Egs. (40) and (43) are both proportional to d 88w, — du 88py, SO the extrinsic curvature perturbations
on the left sides must also be related: N!#! 51?({,‘3),’ = N 81—(%), obtained by simplifying using N*} = el®}(g*®)=1/2 3pd
N8} = B} (gPP)=1/2 This condition is inconsistent with Eq. (32) unless

NP R = N k). (45)

The simple proof of this identity is given in Appendix C. This identity shows that the edge constraints given in Eqgs. (40) and
(43) for SI(E;’,} and 61(“,"’;} are self-consistent.

Equation (32) together with Egs. (39)-(44) place the following constraints on the derivatives of certain components of
38qp along the A{aB} edge,

%8 — 20908up = —2N K, (46)
988py — 9p88ay = —2N') Kfsay} =28, o

988 8ae — 20088ap = —2NPIRYL). 48
P B

The metric perturbation components §8qa, 88«p, and 88q; do not affect the intrinsic metric on the A{cx} face, while the
88pp, 68pa and 88, components do not affect the intrinsic metric on the A{g} face. These components therefore play the

1
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role of gauge degrees of freedom on these faces, which can be chosen arbitrarily subject to the constraints in Eqs. (46)—(48).
While not unique, one self-consistent way to satisfy these constraints along the A{ax8} edge is given by

0p88aa = —2NIKL, (49)
9p88ap =0, (50)
9880y = —NPIKE), (51)
0008 pp = —2N' KL, (52)
0a88pa =0, (53)
0408y = —N'WIKL). (54)

We note that the equations for §ggs, 8s«, and 8gp, in Egs. (52)-(54) can be obtained from those for 68w, 88«p, and
88qy in Egs. (49)~(51) simply by exchanging the & and g indices.

The intrinsic components of the metric perturbations §g,y must vanish on the A{a} face, 0 =05gpp = 38py =88y . It
follows from Eqs. (49)-(51) that the full set of boundary conditions on §gu, along the A{xpB} edge of the A{«} face are
given by

88ab =0, (55)
990 8ac = —2NVIKE (56)
0p88ap = 0p08ps = 0p88py = 088gyy = 0. (58)

When the analogs of the conditions in Egs. (55)-(58) are enforced along all four edges of the A{«} face, they constitute
both Dirichlet and Neumann conditions for the metric perturbations, 6@}1?. on this face. One convenient way to find Bg[ﬁ”

that satisfy these boundary conditions is to solve the bi-harmonic equation on this face:
4 292 4 slo}
(aﬂ +2039 +8y)5gab —o. (59)

Solutions to the bi-harmonic equation are uniquely determined by specifying both Dirichlet and Neumann boundary condi-
tions on the boundary of a compact domain. For the intrinsic components on this face, the solutions with these boundary
conditions are trivial: 0 = sgf;;} = BQ,{SO;} = 5g§,"y’. For the non-trivial gauge components, ag};ﬁ, 8§gg, and ég({f;,}, we use
pseudo-spectral methods to solve this equation numerically, as described in Appendix B. We repeat this procedure to deter-
mine §gqp satisfying all the edge boundary conditions on all the faces of each cubic region.

The solutions to Eq. (59) determine Dirichlet boundary conditions for §gq, on all the faces of cubic region Ba. The
normal derivatives of §g4 on the A{w} face are not prescribed, except the requirement that they be compatible with the
tangential derivatives on the adjoining A{B} faces. The complete interior solutions for §g,, that are compatible with these
boundary conditions can be determined in a variety of ways. For example the three-dimensional Laplace equation could be
solved for each component of §gq, with the Dirichlet boundary conditions agf,‘;} prescribed by the solutions to Eq. (59).

This study has adopted the computationally more efficient approach described in Sec. 3.1. This approach extrapolates the

values of ag}jj’ from the A{a} face into the interior using expressions of the form §g., = h(s%)sgég}, where the smooth

function h(s) is defined in Eq. (5), and s is defined in Eq. (22). The values of each component of 55;(‘1‘;‘ vanish on each edge
of B4 because of the boundary conditions, Eq. (55), imposed on the solutions to Eq. (59). It follows that the extrapolations
88ap =h(s%) ng;;} from the A{o} face will vanish on all the other faces of the multicube structure. These face extrapolations
can therefore be combined to give a complete interior solution for §g,, in region By,

5% =y h(s5)sgls. (60)
o

that automatically satisfies all the required Dirichlet boundary conditions. Adding the resulting metric perturbation to ggp
results in a new metric gqp:

8ab = Zab + S &ab- (61)
The boundary conditions imposed on 8ggp in this construction ensure that ggp satisfies the two important properties out-
lined at the beginning of this subsection. In particular, the intrinsic components of gu, are identical to those of g, on each

cube face, and the boundary conditions imposed on 83, ensure that the extrinsic curvatures, K é‘;} , vanish identically along
each edge of each cube.
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3.3. Step 3: convert gy, into Zgp

Let g, denote the global CO metric constructed in Sec. 3.2. The goal of this third step is to convert g, into a metric
8ap having two important properties: first, the extrinsic curvatures I?é‘;} associated with g, must vanish identically on each
face of each cubic region; and second, the metric g,y must be identical to §ab on each face of each cubic region. We note
that while g, was constructed to have intrinsic parts that are only C° across the interface boundaries, within each region
Zap is actually smooth.

We define the unit normal vectors n({,a) the projection tensors P{ 1b , and the extrinsic curvatures kég} associated with
the metric gab using expressnons analogous to those given in Eqs. (24)-(27). Similarly, we define the differences between
the g, and g metrics, 83y, and the associated differences between extrinsic curvatures, §K {“}.

Béab = gab - gab» (62)
play _ pla) {01}
SKab = Kab K (63)

We note _that these differences are not assumed to be small. To ensure that gy, is identical to éab on the cube faces, we
choose §gqp to be a smooth tensor in the interior of each cubic region that satisfies

58 =0 (64)
on each cube face A{a}. The condition that the extrinsic curvature f(ég} vanishes on the A{a} face is equivalent to the

following condition on 5K{£b}.
S = —k 1. (65)

In analogy with Eq. (27), an exact expression for R;g} is given by

Kl = 1pldepl@tdglate (5,5 — 8. Bog — B4 Eec) (66)
— lp{a}cp{ot} n[a}e (ae écd — éed — 0 éec)
d~ = = =
+3 PL{:X cP{(x] il (ae 88cd — 0c 88ed — 94 6gec) . (67)

The metric perturbation 52 vanishes on each cube face, Eq. (64), therefore fi'®}¢ =a{®}® and Pl — plIb o5 those faces

as well. Consequently, Eq. (67) can be re-written as an exact expression for 61?6{1‘;} on those faces:
b0 = 1BIIPI R (9, 5cq — Bc SZed — 4 5Zec) (68)
= 3 () 7 BBl 5. (69)
The second equality, Eq. (69), follows from the fact that §Zgp vanishes on the A{a} face. This implies that aﬁaéab = ayséab =

= -1
0, PRl =0 s0 P{1 =0, and Al = (NleT) ",

Let /\/'a[g‘ denote the boundary conditions on aazﬁéé‘;} on the A{a} face. Only the intrinsic components of 8, contribute
to the right side of Eq. (69). Therefore Eqgs. (65) and (69) provide the needed boundary conditions for the intrinsic metric
components:

3a3gﬁﬂ =N = 2N, (70)
dadZly =Ny = —2NIkl), (71)
30881 =N = 2N, (72)

The normal derivatives specified in Eqs. (70)-(72) vanish along the edges of the A{«} face, because I:(:;} was constructed

to vanish along those edges. These edge conditions are needed to ensure that the normal derivatives 3(,82([1‘;} are consistent
along the A{x B} edge with the tangential derivatives 80,8527({][;} from the adjoining A{B} face.
The normal derivative boundary conditions on the intrinsic components of 8§({$} in Eqgs. (70)-(72) are sufficient to

guarantee that the entire extrinsic curvature vanishes, Ky, = 0, on the A{a} face. The boundary conditions on the gauge

components are not fixed in this way, however. These gauge boundary conditions can be chosen arbitrarily so long as they
vanish along each cube edge. One choice is simply to set 0 = o{(ﬁ} = O%} = O{g,} everywhere on the A{«} face. Somewhat
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better numerical convergence can be achieved, however, by choosing Nl . to make the second derivatives 9y Bﬁég con-

sistent along the {«f} edge with their values on the adjacent A{B} face. These conditions on /\/lf;'} along the {xB} edge
require

opNLe) = 0Nl = 200 (VWKL) (73)
apNLy =0, (74)
NI = 0, NI = 24, (NWU‘(},}?)). (75)

Analogous conditions on each edge of the A{«} face provide Neumann boundary conditions for the gauge components of

/\/a{;‘} along the edges of this face. Together with the Dirichlet conditions /\/a{g’} =0 along these edges, they provide the
boundary conditions needed to determine J\Q{,ﬁ} N, [';}, and No{g,] everywhere on this face by solving the two-dimensional

o
bi-harmonic equations

(a8 +207 02 + ) N =0, (76)
4 242 {o}

(aﬂ +20302 +ay)/\faﬁ - 77)

(aﬂ +203 02 )N&‘,’,’ - (78)

The pseudo-spectral numerical methods used in this study to solve this equation are described in Appendix B.

Equation (64) provides Dirichlet boundary conditions for Séab. and the N;][g} from Eq. (70)-(72) together with the solu-
tions to Eqgs. (76)-(78) provide Neumann boundary conditions on each face of each cubic region. The perturbations g, can
therefore be determined throughout the region by solving the three-dimensional biharmonic equation,

(a;‘ +oy+0t+20202 +20707 +20) a}) 88ap =0, (79)

with these boundary conditions. The pseudo-spectral numerical methods used here to solve Eq. (79) for (Sgab are discussed
in Appendix B. Adding the resulting §Z,, to g, results in the new metric ggp:

gab = éab + 5§ab~ (80)

The boundary conditions imposed on 88, ensure that g, satisfies the two important properties outlined at the beginning of
this subsection; namely, the components of g, are identical to those of g, on each cube face, and the extrinsic curvatures,
K{b), vanish identically on each cube face. It follows that the intrinsic components of g,, and the extrinsic curvatures K
are continuous across the interface boundaries between all the cubic regions. Therefore g, satisfies the Israel [8] junction
conditions across all the boundaries of the multicube structure, and is therefore C! globally.

4. Numerical examples

Multicube structures for a collection of manifolds have been developed here to test the numerical reference metric
construction methods described in Secs. 2 and 3. All the multicube structures used in these examples satisfy the local
reflection symmetry property described in Sec. 2. This condition is needed to permit the construction of flat metrics in
the neighborhood of each vertex having uniform dihedral angles around each edge of the cubic regions. These example
manifolds are listed in Table 2, including their Thurston geometrization classes (see Ref. [17]). They include representatives
from five of the eight Thurston geometrization classes, missing only the SL,, Nil, and Sol classes.

Some of the multicube structures used in these examples were constructed by hand, while most were constructed from
triangulations obtained from Ref. [6] using the method developed in Ref. [1]. The multicube structures constructed from
triangulations were done automatically by the code described in Appendix A. Those constructed by hand include the Three-
Torus (E1), S3 and SxS1, as described in Ref. [1]. Manifolds of the form G, x S!, where G, is the compact orientable
two-manifold with genus number n, can be constructed easily by hand from the two-dimensional multicube structures
developed for arbitrary G, in Ref. [7]. This study includes G;xS1 as an example. Multicube structures have also been
constructed by hand for several manifolds that can be defined by identifying the faces of three-dimensional polygonal
solids. The numerical examples presented here include the Poincaré dodecahedral space [11], Seifert-Weber space [12], and
all six compact orientable three-manifolds that admit flat metrics (sometimes called E1-E6) [13,14], and the Hantzsche-
Wendt space [15] (also called E6). Appendix D gives the complete descriptions of the previously unpublished multicube
structures constructed by hand for this study, along with a representative selection of those constructed automatically from
triangulations by the code described in Appendix A.

Reference metrics gy, have been constructed numerically for each of the manifolds listed in Table 2. The methods
developed in Secs. 2 and 3 are designed to make the intrinsic parts of g, continuous across the interface boundaries
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Table 2

Manifolds used in numerical tests of the C! metric construction methods developed in Secs. 2 and 3. First part of the table lists this
multicube structures constructed by hand, while the second part lists those constructed from triangulations by the code described in
Appendix A. Names used for the manifolds constructed from triangulations are those used in Ref. [6]. The L(p,q) manifolds are lens
spaces, i.e., quotients of the three-sphere S with a discrete group characterized by parameters (p,q). The manifolds $2 x S1, T x S1,
KB/n2 x ~S1, and SFS[B : (p1.q1)(P2.92)(P3.q3)], are Seifert fibered spaces. S1 represents a circle. The x operator is the Cartesian
product, e.g. S2 x S1, while x~ is the twisted product used to undo the non-orientability of the base manifold, e.g. in KB/n2x~S1.
The base spaces B include the two-sphere S2, the real projective plane RP2/n2, the Klein bottle KB/n2, and the two-torus T. The
parameters, e.g. (p1,q1), describe “singular” fibers whose neighborhoods have been replaced by fibers twisted by an amount determined

by (p1,4q1).
Three-dimensional multicube structures constructed by hand
Manifold Geometry class | Manifold Geometry class
Three-Torus (E1) E3 Half-Turn Space (E2) E3
Quarter-Turn Space (E3) E3 Third-Turn Space (E4) E?
Sixth-Turn Space (E5) E3 Hantzsche-Wendt Space (E6)  E>
Three-Sphere (S3) s3 $2x S1 $2 x St
G2 x S1 HZ x S1 Seifert-Weber Space H3
Poincaré Dodecahedral Space 3

Three-dimensional multicube structures constructed from triangulations

Manifold Geometry class Manifold Geometry class | Manifold Geometry class
L(5,2) s3 L(40,19) 53 SFES[S2:(2,1)(2,1)(7,—6)] s3
L(8,3) s3 L(44,21) s3 SFS[S2:(2,1)(2,1)(8,=7)] s3
L(10,3) s3 T x S1 E3 SFS[S2:(2,1)(2,1)(9, —8)] s3
L(12,5) s3 KB/n2x~S1 E3 SFS[S2:(2,1)(2,1)(10, =9)] s3
L(16,7) s3 SFS[RP2/n2:(2,1)(2,-1)] E3 SFS[S2:(2.1)(2,1)(11,-10)]  §3
L(20,9) s3 SFS[S2: (2, H(2, )2, -] S SFS[S2:(2,1)(3,1)(5, —4)] s3
L(24,11) S° SFS[S2:(2,1)(2,1)3,-2)] S3 SFS[S2:(2,1)(3.2)(3,—1)] s3
L(28,13) S° SFS[S2:(2,1)(2,1)(4,-3)] S3 SFS[S2:(2,1)(4,1)(4, =3)] s3
L(32,15) §° SFS[S2:(2, (2, 1)(5,—4)] S3 SFES[S2: (3. 1)(3,1)(3, -2)] s3
L(336,17) §3 SFS[S2:(2,1)(2,1)(6,—5)] S3
gab Surface Error Kab Surface Norm
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Fig. 5. Graphs representing L, norms, for different values of the spatial resolution N, of the intrinsic metric discontinuities of g, across the multicube
interface boundaries in the left Fig. 5(a), and L, norms of the associated extrinsic curvatures I'({(IZ) of those boundaries in the right Fig. 5(b). In Fig. 5(a) the
graph for S2xS1 is not shown because the errors are at the 107" level.

between the cubic regions, and also to make the associated extrinsic curvatures, f(éa}, vanish on each interface boundary.
These conditions satisfy the Israel junction conditions [8] that ensure gy, is C! across those interfaces.

The methods introduced in Secs. 2 and 3 have been implemented numerically for this study in the SpEC pseudo-spectral
code (developed originally by the Caltech/Cornell numerical relativity collaboration [18-20]). Figs. 5 and 6 show L, norms of
the surface discontinuities of the intrinsic parts of g, and the extrinsic curvatures 125‘;" as functions of the spatial resolution
parameter N (the number of spectral collocation points used in each dimension) for most of the manifolds listed in Table 2.
These L, norms were computed by averaging the squares of all the intrinsic components of each tensor over all the grid
points on all interface surfaces, and finally taking the square root of this average. These results show that the numerical
methods developed and implemented here produce C! reference metrics having small errors that converge toward satisfying
the Israel junction conditions as the spatial resolution is increased. The results for the manifolds not included in these graphs
are similar to those shown in Fig. 6 (except for the flat manifolds E1-E4 and E6 whose K, errors are at or below the 10712
level for all N).
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Fig. 6. Graphs representing L, norms, for different values of the spatial resolution N, of the intrinsic metric discontinuities of gu» across the multicube
interface boundaries in the left Fig. 6(a), and L, norms of the associated extrinsic curvatures K“,Z‘) of those boundaries in the right Fig. 6(b).

The results of these numerical tests have been divided into two groups. Those represented in Fig. 5 have significantly
smaller errors than those shown in Fig. 6. The reason for these differences appears to be the amount of distortion caused by
the dihedral angles needed to allow the cubic regions to fit together without introducing conical edge singularities. Higher
resolutions are needed to represent models having larger distortions at a particular accuracy level. All the manifolds in the
larger error group, Fig. 6, have some edges with small dihedral angles, min(y¥) < 27 /6, while those in the smaller error
group, Fig. 5, have larger minimum dihedral angles min(y) > 27 /5 (except for G, xS1 and Sixth-Turn Space, E5, which have
min(y) = 27 /6).

The surface errors in g, and I~(ab for the examples shown in Fig. 5 decrease (approximately) exponentially with increas-
ing N for N < 28. Double precision roundoff error is probably limiting convergence in these cases for N > 28. Some of the
examples in Fig. 6 also show exponential convergence for N < 28. However most of the examples in Fig. 6 show slower
power law convergence in N. For example the errors in one of the slowest converging cases, KB/n2 x~ S1, are well fit by
the power laws N—14/3 for g, and N=%/3 for f(c[;‘;}' There is some indication that the examples in Fig. 6 with exponential
convergence transition to power law convergence for larger values of N. This transition is probably caused by errors due to
discontinuities in the mixed partial derivatives of 5§g,, at some of the edges. These discontinuities are caused by disagree-
ments between the tangential derivatives of the Neumann boundary data on the faces that intersect along those edges.
At some resolution these higher-order discontinuity errors become dominant and power law convergence takes over. The
examples in Fig. 6 with the largest errors are also those with the most distorted multicube structures, some with dihedral
angles as small as min(y) = 27 /8. This supports the idea that the larger distortions cause the larger errors at a given
resolution N.

5. Discussion

New methods have been presented in Secs. 2 and 3 for building three-dimensional differentiable manifolds numerically.
These methods involve the construction of C! reference metrics that are used to construct special Jacobians to define
the continuity of tensors, and a covariant derivative to define the differentiability of those tensors, across the interface
boundaries between coordinate charts. These methods have been applied in Sec. 4 to a selection of forty three-dimensional
manifolds, including examples from five of the eight Thurston geometrization classes. Test results on these examples show
that the methods developed in Secs. 2 and 3, and our implementation of those methods in the SpEC pseudo-spectral code,
are numerically convergent.

The methods developed here are general enough to be applied to a larger variety of differentiable three-manifolds than
has been studied previously using existing numerical methods. However, the methods presented here make very restrictive
assumptions about the multicube structures to which they can be applied. Perhaps the most obvious limitation is the as-
sumption in Sec. 2 that the multicube structure exhibits a particular local reflection symmetry. A diverse collection of man-
ifolds that satisfy this restriction has been constructed, however, this assumption is not satisfied by most multicube struc-
tures. We do not think that this assumption is essential. It was made here because it was easy to implement numerically in
our code. We think it will be possible to relax this assumption. We plan to investigate ways to do that in a future study.

Another obvious limitation of the results presented in Sec. 4 is the relatively slow numerical convergence of the refer-
ence metrics constructed on manifolds having highly distorted multicube structures. One significant part of this problem
is probably caused by the discontinuities in the derivatives of the Neumann boundary data used to determine the C! ref-
erence metrics in Sec. 3.3 (at cube edges where some intrinsic metric component is present on both faces, e.g. the gyy
component along the A{oe} edge). We think this particular problem can be ameliorated by enforcing somewhat different
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boundary conditions on the gauge components of the metric in Sec. 3.2. We plan to investigate this and other approaches
to improving the numerical convergence of these methods in a future study.

Most of the differential equations used in the physical sciences, e.g. systems of symmetric hyperbolic evolution equa-
tions, or systems of second-order elliptic equations, require specifying some combination of the values of fields and their
derivatives at the boundaries of computational domains. The C! reference metrics developed in this paper are sufficient to
provide the needed transformations of these data at the interface boundaries between coordinate patches. We showed in
Ref. [7] that the differentiable structures produced by different C! reference metrics are equivalent. The needed continuity
of the boundary data at the interfaces between computational domains can therefore be done correctly and exactly using
the C! reference metrics constructed here. There is no fundamental need to refine these reference metrics by increasing
their global differentiability.

For various reasons it may be desirable, however, to transform these metrics further to produce metrics that are smoother
at the interface boundaries, or perhaps that have more uniform spatial structures which can be resolved numerically at
lower resolutions. In Ref. [7] we used numerical Ricci flow to evolve the C! reference metrics developed there for two-
dimensional manifolds. Ricci flow is a system of parabolic evolution equations that transform C! initial data into C*
solutions at later times [21-25]. The initial metrics for Ricci flow are required to have bounded curvatures [26,27] to ensure
that even very short evolutions become real analytic. The Israel junction conditions [8] guarantee that while our C! reference
metrics may have curvature discontinuities across the interfaces, they will not be unbounded there. Ricci flow in two
dimensions also evolves all initial data into constant curvature geometries. We plan to use numerical Ricci flow to evolve
the three-dimensional C! reference metrics produced here in a future study. In three dimensions, Ricci flow may form
singularities before the manifold attains constant curvature, even for manifolds like the Three-Sphere (S3) having very
simple topologies [28]. While there is no guarantee that the Ricci flow of our C! metrics will necessarily produce more
uniform geometries, it will be interesting to see what happens. If singularities occur then it will be interesting to explore
the nature of those singularities. If these evolutions proceed to uniform curvature solutions, then it will be interesting
to determine and to verify that the resulting geometries satisfy the appropriate properties associated with their Thurston
geometrization classes.

Finally, we plan to use the reference metrics developed here in a future study to solve Einstein’s equations numerically
on a diverse collection of manifolds. Solving Einstein’s equations involves finding solutions to an elliptic system to obtain
acceptable initial data, and then to evolve those data using a system of hyperbolic equations that determine the structure
of the resulting spacetime. The appropriate representation of Einstein’s equations to use in spacetimes with non-trivial
topologies was developed in Ref. [29]. We plan to use those methods to explore solutions representing cosmological models
evolved from initial data on a diverse collection of compact three-manifolds. It might also be interesting to explore solutions
to Einstein’s equations on manifolds with non-trivial topologies and asymptotically flat initial data. These geometries are
expected to evolve into black-hole spacetimes [30-32], with any non-trivial topological structures hidden behind event
horizons. By studying these evolutions, it will be interesting to explore whether observers outside the black holes could
identify the presence of these topological structures in some indirect way.

CRediT authorship contribution statement

Lindblom played the major role in all aspects of this project from the conceptualization and methodology development,
formal analysis, software development and implementation, and the manuscript writing and editing.

Rinne played a major role in the ideas and development of the Python code used to transform triangulations into
multicube structures. He also played an important role in checking and editing the formal analysis, and in the final editing
of the manuscript and in preparing the responses to the referees.

Taylor played an important role in helping in the implementation of these ideas into the SpEC code, and in debug-
ging various problems that arose during that implementation. He also played a role in editing the original version of the
manuscript for submission.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This research was supported in part by NSF grant 2012857 to the University of California at San Diego.
Appendix A. Converting three-manifold triangulations to multicube structures

This appendix describes the method used by our code to convert a three-dimensional triangulation into a multicube
structure. A three-dimensional triangulation consists of a set of tetrahedra and the identification maps that identify each

tetrahedron face with the appropriate face of its neighbor. These face identifications are determined by specifying which
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D

B B B

Fig. Al. In Fig. All(a) label the vertexes of the tetrahedron “A”, “B”, “C" and “D”, and add vertexes at the midpoints of each edge. In Fig. A.1(b) add
additional vertexes at the centroid of each face of the tetrahedron, labeled “a” for the centroid of face “BCD”, “b” for face “ACD”, etc. Then add additional
edges (shown as dashed line segments) connecting each centroid to the midpoint of each adjoining edge. In Fig. A.1(c) add one additional vertex, labeled
“0" at the centroid of the tetrahedron. Add additional edges (shown as dash-dot line segments) that connect “O” to the centroids of each face, and add six
additional faces that include “O” as a vertex. In Fig. A.1(d) the “distorted” cubes that make up the tetrahedron are illustrated. The two cubes adjacent to
vertexes “A” and “C” are shown with opaque shaded faces, while the faces of the cubes adjacent to “B” and “D” are transparent.

Fig.A.2. Locations of the cubic regions in R3 assigned by our code for the manifold SFS[RP2/n2:(2,1)(2,-1)] based on the triangulation given in the Regina [6]
catalog. Each tetrahedron is divided into four cubes, which are placed in groups with some of the identified internal faces overlapping.

vertices of one tetrahedron are identified with which vertices of its neighbor. Large numbers of triangulations specified in
this way are published in the Regina catalog [6]. Our code is designed to read the triangulation structures exported into
files by the Regina software.

Given a three-dimensional triangulation, it is straightforward to convert it to a multicube structure following the method
described in Ref. [1]. The idea is to cut each tetrahedron into four cubes by adding vertices and edges as illustrated in
Fig. A.1, and described in some detail in the caption. Our code creates a list of cubic regions from the list of tetrahedrons,
then it assigns unique locations in R3 to each cube. These locations are chosen so the four cubes associated with each
tetrahedron are grouped together, and these tetrahedron based groups are arranged in a 2D lattice for convenience of 3D
visualization. Fig. A.2 illustrates the locations of the cubes assigned by our code for the multicube structure constructed for
the SFS[RP2/n2:(2,1)(2,-1)] manifold from the triangulation given in the Regina catalog.

Finally our code constructs the appropriate maps in R3 between cube faces using Eq. (D.1), following the prescription
given in Ref. [29]. In addition to the locations of each cube, these maps depend on knowing the appropriate rotation/re-
flection matrix, C’gg, that aligns the faces A{a} and B{B} in the appropriate way. Each cube has six faces, three of which
correspond to internal connections between the four cubes that make up a tetrahedron. The rotation/reflection matrices
needed for these internal face transformations are the same for every tetrahedron group of cubes. So they are easily included
in the code. The three additional faces of each cube are parts of the faces of the tetrahedra. The appropriate rotation/re-
flection matrices for those faces depend on the face mappings of the triangulations. There are, however, a reasonably small
number of ways the faces of any two tetrahedra can be identified. Our code includes the appropriate matrices for all the
possible cube face matchings (which we determined by systematically reproducing each possibility with a collection of pa-
per models). Once a triangulation with its face mappings is read into our code, it automatically determines the appropriate
cube mappings from its table of all possibilities. Our code can then output the complete multicube structure in any desired
format. For example Tables D.6, D.8, D.9 and D.10 in Appendix D are output from our code in BIgX format. Our code also
generates the appropriately formatted input files used by the SpEC code to compute the reference metrics g, described in
Sec. 4.

Our code can be used to construct a multicube structure from any three-dimensional triangulation. However, the methods
for constructing reference metrics presented in Sec. 2 only work for special multicube structures that allow uniform dihedral
angles around each edge. The code therefore tests several identities to determine when this is possible.

Once the multicube structure has been constructed by the code, it determines the dihedral angles v4;4p) around each
edge using the uniform dihedral angle assumption given in Eq. (1) of Sec. 2.2. The most important identity that must be
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satisfied by these ¥4(4p) involves the associated angles 64(y) between the axes that define the edges of the A{«} face. These
angles must agree with the angles 6y} between the axes of the B{a} face identified with it in the multicube structure.
Without this condition the intrinsic metric of region 34 would not be continuous across that face with the intrinsic metric
of region Bp. The edge angle 64« is related to the dihedral angles ¥4(«p) using the spherical law of cosines,

Cos Ya(py) + COS Ya(ap) COS YA(ay)
sin Ya(ap) SINYA(ay) '

Our code evaluates the 64y} for each vertex of each cube face and determines whether it agrees with the corresponding
angles 6lg(y) at those vertices. Multicube structures that do not satisfy this condition could not be used in the present study.

Our code also checks two other less restrictive identities. One ensures that the determinant of the flat inverse metric
e‘}"’[aﬂy} defined in Eq. (2) is positive in each cubic region:

COS@A{a} = (A.l)

dete‘j\b{aﬂyl =1+ 2c0s Ya(ap) COS VA{ay} COSYa(py} — COS ‘l’fx[aﬂ} — cos w%{ay} — cos 'ﬂfx{ﬂy} > 0. (A2)

A second identity ensures that the areas of the spherical triangles created by the intersection of each cubic region with
small spheres located at their vertices (see Fig. 2(b)) are positive. This requires

Valap) + Vajay) + Yapy) > 7. (A3)

We have run this code on all the triangulations consisting of up to eleven tetrahedra listed in the catalogs of all closed
prime orientable three-manifolds in Refs. [2-6]. We find that of these only the 29 manifolds listed in Table 2 satisfy all
these constraints.

Appendix B. Solving the biharmonic equation using pseudo-spectral methods
The biharmonic equations in two and three dimensions are given by
0= (3 +20207 +) U, (B.1)
o=(a;‘+a;‘+a;‘+2ax2 02 +20292 +202 a}) u. (B2)

The solutions to these equations on compact domains are determined uniquely by the values of U and its normal derivative
dU /dn (the Dirichlet and Neumann conditions respectively) on the boundaries of the domain [16].

In this study these equations are solved using pseudo-spectral numerical methods. A function U is specified in this ap-
proach by its values on a special mesh. The mesh points used here are located at the Gauss-Lobatto collocation points [33].
This choice makes it possible to transform easily and exactly back and forth between the mesh representation and a Cheby-
shev polynomial based spectral representation of U. The value of U at a particular mesh point is written here as Uyjj; in
two dimensions or Ujjk; in three. Partial derivatives of a function, which are exact for this spectral representation, can be
written as special linear combinations of its values on these mesh points,

WU ijy = DWi* Uy, (B.3)
dyUyijy =D " Ugiey, (B.4)

where the repeated indices s or t are summed over all the mesh points in the particular direction. The discrete pseudo-
spectral representation of the two-dimensional biharmonic equation can therefore be written as

0=DWFDWIDNO DX VU, +2DN DX DY MDYV Uy,
+D(y)jsD(y)stD(y)tuD(y>uv Ujiv).- (B.5)

An analogous expression is used for the discrete representation of the biharmonic equation in three dimensions.

Boundary conditions are imposed by replacing the discrete biharmonic equations along the outer layer of mesh points
with discrete versions of the Neumann boundary conditions at those points. Dirichlet boundary conditions are also needed
along the boundaries, and those are imposed by replacing the discrete biharmonic equation on the mesh points at the next
layer of points adjacent to the boundary with the Dirichlet condition evaluated at the nearest boundary points. Fig. B.1(a)
illustrates where these boundary conditions are imposed for the case of a two-dimensional mesh. The three-dimensional
case is analogous, but more difficult to illustrate in two-dimensional figures.

The functions Uy;j) in two dimensions (or Ujjjk in three) can be thought of as vectors U 4 on a space where the super-
index A ranges over all the mesh points, i.e. A = {ij} in two dimensions (or A = {ijk} in three). The discrete biharmonic
equation can be thought of as a linear matrix equation on this space:

ZOAB Up=ha, (B.6)
B
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Fig. B.1. Figure on the left represents one corner of a two-dimensional mesh used to solve the biharmonic equation. Discrete representations of the boundary
conditions for points along the boundaries replace the biharmonic equation at the points marked with (red) diamonds for Dirichlet and (blue) circles for
Neumann conditions, respectively. The average of the Dirichlet conditions from both nearby boundary points is imposed at the point marked with a (green)
square. Discrete representations of the biharmonic equation are imposed at the remaining interior mesh points marked with (black) stars. Figure on the
right illustrates the average (rms) boundary errors in the Dirichlet and Neumann boundary conditions for examples of the numerical 2D and 3D biharmonic
solutions used in this study.

where O 48 is defined in two dimensions by the expression in Eq. (B.5) at the interior mesh points. The discrete versions
of the Dirichlet and Neumann conditions are imposed on the components of this equation representing the surface layers
of the mesh. The vector h 4 holds the boundary data for those conditions, in addition (if any) to the inhomogeneous source
for the equation at the interior points. The expression used here for O 45 in three dimensions is completely analogous.

Our primary interest is finding smooth functions U that satisfy the boundary conditions as accurately as possible. The
components of the matrices D®;J, etc., which provide discrete representations of the derivative operators, have average
magnitudes that scale like N, where N is the number of mesh points used in each direction. Therefore the components
of the matrix O_AB representing the biharmonic operator on interior mesh points will scale like N4, and for large N will
therefore dominate the boundary condition terms. These interior components have therefore been scaled in this study by
N4 to emphasize the relative importance of the boundary conditions. A similar scaling would also be applied to any source
terms in h_4, however, no additional scaling is needed for the homogeneous equations considered here.

The linear equations given in Eq. (B.6) can be solved numerically using a variety of iterative techniques, e.g. using solvers
such as GMRES [34] or BI-CGSTAB [35]. Numerical experiments using pseudo-spectral methods described above for this
problem showed that faster and more accurate results could be obtained using more direct non-iterative methods, because
the meshes used here are relatively small (in comparison with those used by standard finite difference or finite element
methods). The matrix OAB has size N2 x N2 for the two-dimensional problem and N3 x N3 for three, where N is the
number of mesh points used in each dimension. The largest meshes used in this study have N = 35, so the largest matrix
has size 1,225 x 1,225 for the two-dimensional meshes, and 42, 875 x 42, 875 for three. For matrices of this size, it is
possible to construct the LU decomposition of OAB directly using modest computing resources. Very fast direct algorithms
then exist for solving such linear systems exactly, see e.g. Ref. [36]. The construction of the LU decomposition requires a
lot of memory and computer time. The highest resolution that could be run on the computing facility available to us is
N = 35 due to memory limitations. Constructing the LU decomposition at this resolution required about 152 hours on a
single processor. But once computed for each needed resolution N, these LU decompositions can be stored on disk and
quickly read in whenever they are needed. A very accurate solution of the linear equations in LU form can then be obtained
very quickly and efficiently. Pre-computing the LU decompositions in this way reduces the N =35 problem of solving one
3D biharmonic equation (plus six 2D biharmonic equations to set the boundary conditions) from about 152 hours to about
75 seconds.

The condition number « of a matrix operator O 4B is a measure of how accurately linear equations like Eq. (B.6) can be
solved numerically [37]. Fractional errors in the solutions Ug can be as large as k multiplied by the fractional errors in the
matrix OAB and the source h 4. We have estimated « for the two and three-dimensional representations of the biharmonic
matrices used in our study. These approximations were obtained using the simple approximate expression:

_ maxa} 045

Koo =||O o1
oo = 1O]]oo |1 [loo > min 4 a2

(B.7)
where MAB is the upper diagonal part of the LU decomposition: )", PaCOB = > LIACLICB, where P4€ is a permuta-
tion matrix. These estimates of k~, using Eq. (B.7) are illustrated in Fig. B.2. As the figures show, these estimates for the
condition number scale with spatial resolution N as a power law: ~N*2. While condition numbers as large as the 10°
seen in this figure might seem large, they mean that fractional errors in the matrix O AB and the source h 4 at the double
precision roundoff level, 10716, could produce fractional errors only as large as 10~'! in the solution Ug. We also note
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Fig. B.2. Figure illustrates the spatial resolution, N, dependence of the condition number k (using the estimate given in Eq. (B.7)) for the pseudo-spectral
matrix representations of the two- and three-dimensional biharmonic operators used in this study.

that condition numbers of this size have not significantly influenced the boundary condition errors (our primary interest in
these solutions), as illustrated in Figs. B.1(b), 5 and 6.

In addition to being very quick and efficient, the direct LU solver method used here provides solutions having better
accuracy for our purposes than those obtained with the iterative solvers that were tested. Solutions to the two- and three-
dimensional biharmonic equation are used here at various stages in the construction of a reference metric. The important
requirement is the need to have those solutions satisfy the Dirichlet and Neumann boundary conditions as accurately as
possible. The interior details are not of primary importance, so long as they are smooth. Fig. B.1(b) illustrates the conver-
gence with resolution N of the errors in the Dirichlet and Neumann boundary conditions satisfied by numerical examples of
two- and three-dimensional biharmonic solutions obtained with this direct LU solver method. The two-dimensional results
are at the double-precision roundoff levels for all values of N tested, while the three-dimensional results show the expo-
nential convergence that is expected for pseudo-spectral methods. The average interior bulk residual errors are also roughly
at double-precision roundoff levels. The boundary condition accuracies achieved using this direct LU solver method were
much better than anything obtained with the iterative solvers tested here.

Appendix C. Proof of the identity N'#} k&ﬁ,’ =-Nl K }f;’

The following simple argument shows that this condition is satisfied along the A{8} edge by the C° metric g, con-
structed in Sec. 3.1. Start with the identity

y AR =y alb Ooalf! = o O, (AP M) -y DT, R = —y PR, (1)
where the y“ are the components of the vector 8, = %3, that is tangent to both the A{a} and A{B} faces. The last equality
follows from the fact that a (ﬁ(‘”b "’3}) =0 because the dihedral angle is constant along the A{8} edge. The additional

simple identities fite}@ P K{o’} =qlhlayb K{ﬁ} =0 and K{O’ I_(é,ﬁy) =0 can be used to transform the tensor identity in
Eq. (C.1) into the coordmate 1dent1ty given in Eq. (45). Flrst obtain the coordinate representations of the simple identities:

0=ql@ayb I_(c{zgl — Nl (gaal—(éﬂ)t/} + g"ﬁk};"}) ’ (C2)
0=ilf1ey kY = NP (2P RY) + 2P RY)). (C3)
Coordinate representations of ﬁwaybl_(;‘;} and f “be“S} can be written as
APy PR = NP (PR + 2P R (C4)
Ay PRI = N (g2 RY) + 37K (C.5)

These expressions can be simplified by using Eq. (C.2) to express K{y} in terms of Kﬁy, and similarly Eq. (C.3) to express

Pl

f(l{ﬁ) in terms of Ky, . Making these substitutions in Egs. (C.4) and (C.5) give

_ _ _ 2

APy PRY = NP (R1T)" (g — P 2] Rjs), (C6)
- - - 2 7

oy DRI — i) (R1) [t — g2 2| RL). (€7)
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It follows that the identity ﬁ{“}aybl_(é‘g} = —ﬁ{ﬁ}“ybl_(éz’) from Eq. (C.1) implies the identity N/} I_(éf;,} =Nl I_(g’;} given in
Eq. (45).

Appendix D. Example three-dimensional multicube manifolds

This appendix gives detailed descriptions of the multicube structures of several manifolds used in this study. New struc-
tures are presented here for all the examples constructed by hand (except the trivial flat examples, E2 and E3): the Poincaré
dodecahedral space [11] in Table D.5, Seifert-Weber space [12] in Table D.7, G2xS1 in Table D.4, and the three non-trivial
compact orientable three-manifolds that admit flat metrics [13,14], E4, E5 and E6 (Hantzsche-Wendt space [15]) in Ta-
bles D.1, D.2 and D.3 respectively. In addition, a selection of the multicube structures constructed automatically from
triangulations using the code described in Appendix A are presented here: KB/n2x~S1 in Table D.9, L(5,2) in Table D.6,
SFS[RP2/n2:(2,1)(2,-1)] in Table D.10, and SFS[S2:(2,1)(2,1)(2,-1)] in Table D.8.

The notation used to describe these multicube structures is based on that introduced in Ref. [1]. Each multicube structure
consists of a set of non-overlapping cubes, 34, that cover the manifold, and a set of maps \Ilgg that identify the faces of
neighboring cubes. The interface boundary maps used here (written in terms of the global Cartesian coordinates used
for the multicube structure) take points, xg, on the interface boundary B{B} (or equivalently dzBg) of region Bg to the
corresponding points, x'A, in the boundary A{«} (or equivalently d,5,4) of region B4 in the following way,

Xy =cly+ [+ Chs i — ch — [ (D.1)

The vectors Cq + fa and g + fﬁ are the locations of the centers of the A{«r} and B{B} faces respectively, and ng is the
combined rotation/reflection matrix needed to orient the faces properly.

The following tables include lists of the cubic regions, B4, used to cover the manifold in each structure, the vectors Cp4
that define the locations of the centers of these regions in R3, and the rotation/reflection matrices C’;g needed to transform

each cube face into the face of its neighbor.? The identification of the B{B} face with the A{«} face is indicated in the tables
by {« A} <> {#B}. The notation I in these tables indicates the identity matrix, while Ry indicates the + /2 rotation about
the outward directed normal to the {«} cube face.

Table D.1

Multi-Cube representation of Third-Turn space [13,14] (E4, one of the six compact orientable three-
manifolds that admits a global flat metric), can be constructed by identifying opposite rectangular
faces of a hexagonal cylinder, and identifying the two hexagonal faces after twisting by 27 /3. Multi-
cube structure: region center locations ¢4, region face identifications, {o A} <> {8 B}, and the rotation
matrices for the associated interface maps, Cif{.

A Ca o =—X o =+X a=-y a=+y o=-z a=+z

BpCi BpCi Bpci | Bpci | Bpcl | BpcCl
1 (0,0,0) 2+x1 2—x1 3+y1 3—yl 2+zRy; 3—zR;
2 (1,0,0) 1+x1 1—x1 3—-xRy; 3+x Ry, 3+zRiz 1-zR_;
311,00 | 2—yR; | 24yR; | 1+y1 1—yl 1+zR; | 2-2zR?,
Table D.2

Multi-Cube representation of Sixth-Turn space [13,14] (E5, one of the six compact orientable three-
manifolds that admits a global flat metric), can be constructed by identifying opposite rectangular
faces of a hexagonal cylinder, and identifying the two hexagonal faces after twisting by 277 /6. Multi-
cube structure: region center locations ¢4, region face identifications, {o A} <> {8 B}, and the rotation
matrices for the associated interface maps, Cﬁg.

A | Ca o =—X o =+X a=-y a=+y a=-z a=+z
Bp BpCY BpCF B CF BpCY BpC
11,00 | 5-xR%, | 6+yR; | 2+y1 3+xRyz | 2+2zRy; | 6-2zR%,
2 | (0,000 | 4—xR%, | 3—x1 6-yR, [ 1-y1 34+zRy; | 1-zR_;
3| (1,0,0) | 2+x1 1+yR; | 5-yR:, | 4+xRy; | 44zR%, | 2—zR_;
4 | 31,00 | 2—xR2, [ 3+yR; | 5+yl 6+xRy; | 5+zRy; | 3—2zRZ,
5| (3,00 | 1-xR2, | 6-x1 3—-yR, | 4-yl 64+zR:y; | 4—zR_;
6 | (4,000 | 5+x1 4+yR; | 2—-yR%, | 1+xRy; | 1+2zR:, | 5-zR;

2 The vectors i,,, are the relative positions of the center of the A{«} cube face with the center of region B,4. These vectors are the same for all the cubic
regions, and are given explicitly in Ref. [1] so they are not repeated here.

22



L. Lindblom, O. Rinne and N.W. Taylor Journal of Computational Physics 460 (2022) 110957

Table D.3

Multi-Cube representation of Hantzsche-Wendt space [13-15] (E6, one of the six compact orientable
three-manifolds that admits a global flat metric), can be constructed by identifying faces on two
cubic regions (see Ref. [14] example 8.1.7 for details). Multicube structure: region center locations
Ca, region face identifications, {o A} — {8 B}, and the rotation matrices for the associated interface

maps.Cﬁf{.
A | Cx o =—X o =+X a=-y a=+4y a=-z a=+z
Bpci | Bpct | Bpci | BpCH Bpci | Bpchl
0] 000 | 1+xR, | 1-xR, | 1-yR:, | 1+y R, | 1421 | 1-z1
1] 001 | 0+xR%, | 0—xR%., | 0—yR%, | O+yR%, | O+zI 0-z1
Table D.4

Multicube representation of the product space G2xS1 constructed from the genus number Ng =2
two-dimensional compact orientable manifold. Multicube Structure: region center locations 4, re-
gion face identifications, {&@ A} <> {8 B}, and the rotation matrices for the associated interface maps,

Coo-

A E‘A o =—X o =+X a=-y oa=+y o=-Z oa=-+z

Bpci | BpcB | Bpci | BpcB | Bp Bl | Bp B
1 (L,2L,0) 8+x1 10—x1 24yl 4—yl1 1+2z1 1-z1
2 (L,L,0) 7+x1 4+xR2, | 3+y1 1—yl 2+2z1 2—2z1
3 (L,0,0) 64+x1 9—x1 44yl 22—yl 3+z1 3—-z1
4 (L,—L,0) 54x1 2+xR2_Z 1+yl 3—yl 44z1 4—z1
5 (0,-L,0) 7-xR%, | 4-x1 8+yl 6—yl 5+2z1 5-z1
6 (0,0,0) 9+x1 3—x1 54yl 7—y1 6+2z1 6-—2z1
7 (0,L,0) 5—XRZ_Z 2—x1 6+yl 8—yl 7+z1 7—z1
8 (0,2L,0) 10+x1 1—-x1 7+yl1 5-y1 8+z1 8—z1
9 (—L,0,0) 3+x1 6—x1 9+yl 9—yl 9+z1 9-2z1
10 | (-L.,2L,0) 1+x1 8—x1 10+y1 10—yl 10+2z1 10—-2z1

Table D.5

Multicube representation of the Poincaré dodecahedral space (also called the Poincaré homology three-sphere) [11]. This multicube struc-
ture is based on cutting a dodecahedron into twenty cubes (each vertex of the dodecahedron is the vertex of one of the cubes, opposite
vertices of these cubes all intersect at the center of the dodecahedron) and identifying opposite faces of the dodecahedron after rota-
tion by 7 /5. Multicube Structure: region center locations ¢4, region face identifications, {o A} <> {8 B}, and the rotation matrices for the

. . Bf
associated interface maps, C,,.

A Z‘A oa=—X o =+X a=-y a=+y oa=—-Z oa=-+z
BB BB Cy BB Gy BB Chy BB Chy BB iy
1 (2L, 3L,0) 124y RiyRyz | 15—y Ry, 8—yRyR%, | 4+xRuRy; 10—y RyRyx | 2—-21
2 (L, 3L, L) 6+x1 16—y Ry, 18+y1 13—zZR Ry | 1421 7—-zRy;
3 (4L, 0,3L) T+x1 12+zR Ry | 19+y1 9—-xR_; 18+zR_, 4-z1
4 (4L, 0,4L) 17-xRaR%, | 14y RR, 13+xRixR; | 10-xR_; 3+z1 15— X R_yRyy
5 (0,3L,0) 8+y RyyRy, 12+x RRE, | 16+y Ry, 19+x Ry, 14—y Riy 6—z1
6 0,3L,L) 17—zRRyy | 2—x1 10+y1 20+x Ry 5+z1 11—-2zRy,;
7 (2L,3L,3L) | 13—-x R2, 3—x1 M+yl 16 +2z Rx 2+zR; 8—z1
8 (2L,3L,4L) | 14—x RZ, 174+yRyR; | 1-yRE,Ryy | 5—xR Ry 7+z1 19—y R_yRy
9 (0,L,0) 3+y Ry 20—x Ry 12—xR.4Ry; | 164+x R Ry; | 18+xRyy 10-z1
10 | (0,L,L) 44y Ry, 14+yR, 1—2z R4Ryy 6—y1 9421 15-z1
11 | (0,3L,3L) 20+z Ry 15+y R, 17—y R, 7—yl1 6+zR_; 12—z1
12 | (0,3L.4L) 9—y R,Riy 5+x R% Ry 18—y R, 1—x R;R_y MN+z1 34+xRyR;
13 | (2L,0,0) 7-xR%, 4—y RyR¢ 16—x RyRy; | 20+y RyR%, | 24y RRy; 14-z1
14 | (2L,0.L) 8—xR2, 18—x1 5—z R 10+x Ry 13421 19—z Ry,
15 | (0,L,3L) 4+2z R Ry 19—x1 1+xR_, 11+x Ry, 10+z1 16—z1
16 | (0,L,4L) 13—y R Ry | 9+y RzRiy 2+xR; 5-y Ry 15421 7+y Rix
17 | (4L,0,0) 4-xR2,R, 20—-yR Ry, | 11—y R, 8+x R R, 6—xR_,Ry; 18—z1
18 | (4L,0.L) 14+x1 9-zRy 12—y RZ, 2-y1 17+z1 3—zRy;
19 | (2L,0.3L) 154+x1 5+y R 842z RixRyy 3—y1 14+zR_; 20-2z1
20 | (2L,0,4L) 9+x Rix 6+y R 174+xR;Ryy | 134y RE,Ryy | 19421 11—x Ryy
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Table D.6

Multicube representation of the Regina triangulation of the lens space L(5,2). Multicube Structure:

identifications, {« A} <> {8 B}, and the rotation matrices for the associated interface maps, Ciﬁ.
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region center locations C4, region face

A Ca o =—X a=-+x a=-—y a=+y a=—-z a=+z
Bp Ci Bp Ci BpCi Bp Ci BpCi Bp Ci
0.0 | (0,0,0) [ 03+zRyRy | 01—x1I 02—zRRyy | 02—yl 01—y RxRi, | 03—2z1
0.1 | (L,0,0) | 0.0+x1 02-XxRix | 0.0—zR4Ryy | 02+xRy; 03—y R2,Ry | 03+xR,
02 | (0,L,0) | 0.1+xRx 01+yR; | 00+yl 03-xR%,Ri; | 00—y RuxRiz | 03+y Rix
03| 001 | 02+yR,R; | 01+zRsy | 01-zR: Ry | 02+2zR, 00+z1 0.0—x RyyRy;
Table D.7

Multicube representation of Seifert-Weber space [12]. This multicube structure is based on cutting a dodecahedron into twenty cubes
(each vertex of the dodecahedron is the vertex of one of the cubes, opposite vertices of these cubes all intersect at the center of the
dodecahedron) and identifying opposite faces of the dodecahedron after rotation by 37 /5. Multicube Structure: region center locations
Ca, region face identifications, {a A} <> {8 B}, and the rotation matrices for the associated interface maps, Czﬁ.

A Ca o =—X o =+X a=-y a=+y a=-z a=+z
BpCl BpCl B Ci BpCh BpCi BpC

1 (2L,3L,0) 12+yRyRyz | 19—y RyR; | 8—y RyRZ, 13-zRL,Rix | 9—y RE Rix 2—-z1

2 (2L,3L,L) 6+x1 15—y RyRy; | 18+y1 20+xRRy; | 1421 3-z1

3 (2L,3L,2L) 7+x1 5+y RyyR; 19+yl1 10—x R.xR_; 2+z1 4—-z1

4 (2L,3L,3L) | 17—x RxR%, 12+zR%,Ryy | 13+xRR; | 6-xR4R_; 3+z1 16 —x R%,Ryy

5 (0,3L,0) 17-zR%,Ryy | 124X RuRE, | 164y Ryy 3+x RiRy 13—yRyRix | 6-21

6 (0,3L,L) 44y R Ry 2-x1 10+y1 19+xR R, | 5+z1 7-2z1

7 (0,3L,2L) 14—xR,RE, | 3-x1 1M+yl 9—x R4R_, 6+2z1 8—z1

8 (0,3L,3L) 10-yRyR; | 17+yRyyR; | 1—-y RZRyy 16+zR Ry | 7421 20—y R2 Ry

9 (0,L,0) 7+y R Roy 20— x R_y 1-zR,R2, 16+x R Ry, | 17+xRyRyy | 10—21

10 | (0,L,L) 3+y RiRix 14+yR_; 8 —x RizRyy 6—y1 9+7z1 11-z1

11 | (0,L,2L) 13-xRR%, | 15+yR_; 18—yRyRZ, | 7—y1 10+2z1 12-z1

12 | (0,L,3L) 20+zRiRy | 5+xR2 Ry 14—y RyR%, | 1-xR Ry 1M+2z1 4+x R yR?,

13 | (2L,0,0) 11—xR%,Riy | 4—y RR 5—2z RxRyy 20+y RyR%, | 1+y R4R%, 14-z1

14 | (2L,0,L) 7-xRE,R 18—x1 12—y R%,Ryy | 10+x Ry, 13421 15-z1

15 | (2L,0,2L) 17—y RyR; | 19-x1 2+x R Ryy 11+x Ry 14+z1 16—2z1

16 | (2L,0,3L) 44z R yR?, 9+y R Ry 18+xRxR; | 5—y R,y 15421 8+y RizR

17 | (4L,0,0) 4-x R%,R 9—z RyR, 15-x RyzRyy | 8+xRR.y 5—x RyR%, 18—2z1

18 | (4L,0,L) 14+x1 16—y R Ry | 11-yR,Ryy | 2—-y1 17421 19-2z1

19 | (4L,0,2L) 154x1 6+y R;R 1+x R;Ryy 3—y1 18421 20-z1

20 | (4L,0,3L) 9+x Ryx 2+y RRy 8+x RixR2, 13+y RE,Ryy | 19421 12—-x RyyR;

Table D.8

Multicube representation of the Regina triangulation of the Seifert fiber space SFS[S2:(2,1)(2,1)(2,-1)]. Multicube Structure: region center
locations €4, region face identifications, {& A} <> {8 B}, and the rotation matrices for the associated interface maps, Cﬁi‘

A Ca a=—X o =+X a=-y a=+y a=-z a=+z

Bp Ci Bp Ci Bp Cil Bp Ci Bp Ci Bp Ci
0.0 | (0,0,0) 12-xR2, 01—x1 11—z R Ry 02—yl 13—y RR; | 03-2z1
0.1 (L,0,0) 00+x1 1.3+2z Ry 12—zR3,Rix | 02+xRy; 1.0-y RyR; | 034+xRy
0.2 (0,L,0) 1.0-xR%, 0.1+y R, 00+y I 124y R2,Ryy 11—y R2,Ry 0.3+y Rix
03 | (0,0,L) 13—-xR,Ry | 0.1+zRyy 1.0—zRR_y 02+2z Ry 00+z1 1.1+x Ry
1.0 | (3L,0,0) | 02-xR%, 11-x1 0.1—z R4R_y 12—yl 03—y RxR_; 13-2z1
1.1 (4L,0,0) 1.0+x1 03+2zRyy 02—z R% Ry 1.24+x Ry; 00—y RxR_; 13+x Ry
1.2 (3L, L,0) 0.0-xRZ, 11+yR_; 1.0+y1 02+y R%,Ryy 0.1-y R%,R 1.3+y Ryx
1.3 | (3L,0,L) | 03—xR%,R 1.1+2z Ry 00—z R_4R_y 1242z Ry 1.0+z1 0.1+xR_y
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Table D.9
Multicube representation of the Regina triangulation of the Seifert fiber space KB/n2x ~S1. Multicube Structure: region center locations
Ca, region face identifications, {a A} <> {8 B}, and the rotation matrices for the associated interface maps, Cﬁﬁ.
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A EA o =—X o =+X oa=-y oa=+y oa=—-Z a=+z

Bp Ci Bp i BpCi Bp Ci Bp Ci Bp Ci
0.0 | (0,0,0) 21+x1 01—x1 31+xR Ry | 02—yl 43+7z1 03—-z1
0.1 | (L,0,0) 0.0+x1 11+xR,Rix | 33+zRL Ry | 02+xRiz | 41+xRyy 03+xR_y
02 | (0,L,0) 22+y Ry 0.1+y R, 0.0+yl 13+zRy | 42+y Ry 03+y Rx
0.3 | (0,0,L) 23+zR.y 0.1+2z Ry, 324y Ry 02+zRy | 00421 124y Ry
1.0 | (0,3L,0) 22-xR%, 11-x1 52+y1 12—yl 33-xR,Ry; | 1.3-z1
1.1 | (L,3L,0) 1.04+x1 0.1+xR%,Rix | 51+xR; 12+xRy; | 32—-xR%L,R.y | 13+xR,,
1.2 | (0,4L,0) 20-xR%, 11+y R, 1.0+y 1 03+zRyx | 3.0-xRyR:; | 1.3+y Ry
13 | (0,3L,L) 23-xR%L,R | 1.1+z Ry, 5342z Ry 124zR, | 1.0+2z1 02+y Ry
20 | (3L,0,0) 12-xR%, 21-x1 53—xRiRyy | 22—y 43-xRyRy; | 23-z1
2.1 | (4L,0,0) 20+x1 0.0—x1 50-xRiRiy | 22+xRy; | 42—-xR3L,R;:y | 23+xR,,
22 | (3L,L,0) 1.0-xR%, 21+y R, 20+y1 02-xR; | 40—xR yR:; | 23+y Ry
23 | (3L,0,L) 13-xRL,R, | 21+zRyy 52-xRL, R, | 224+zRy | 20+z1 0.3—xRyy
30 | 3L,3L,0) | 12—z RyRux | 3.1—x1 43—y R%, 32—yl 51-zR%, 33-z1
3.1 | (4L,3L,0) | 3.0+x1 00—y RiRix | 41—y R,Ry | 324+xRy; | 50-zR%, 33+xRy
32 | 3L4L0) | 1.1-zR2,R_y | 3.1+y R 3.0+y1 03-yRyy | 52—-zR. R, | 33+y R
33 | BL3LL) | 1.0—zRyyRix | 3.1+2z Ry 40—y R%, 32+z Ry 3.0+z1 0.1-y R2,Ryx
4.0 | (6L,0,0) 22-zRiyRix | 41—x1 33—y R%, 42-y1 50—y Ryx 43-z1
4.1 | (7L,0,0) 40+x1 0.1-zR_y 31-yRL,Ry | 42+xRyz | 51—y Rix 43+xR_y
42 | (6L,L,0) 21-zR,R_y | 41+y R, 40+y1 02—-zRix | 53—y Ry 43+y Ry
43 | (6L,0,L) 20-zRiyRix | 41+2zRyy 3.0-yRZ, 42+zR.y | 40+z1 00-2z1
5.0 (6L,3L,0) 21—y R_;Rx 51—x1 40—z R 52—yl 31—z Riy 53—-z1
51 | (7L,3L,0) | 5.04x1 11—y Ry, 41—z Ry 52+xRy; | 3.0-zR%, 53+x Ry
52 | (6L,4L,0) | 23—y R%,R.; | 5.1+y R 50+y1 10—y1 32-zR2,R; | 53+y Rix
53 | (6L,3L,L) | 20—y R;Rex | 51+2zRyy 42—z Ry 52+zRy | 50+2z1 13—y Ry

Table D.10

Multicube representation of the Regina triangulation of the Seifert fiber space SFS[RP2/n2:(2,1)(2,-1)]. Multicube Structure: region center
locations C, region face identifications, {« A} <> {# B}, and the rotation matrices for the associated interface maps, C,/,.

A CA o =—X a=+X a=-y oa=+y a=-Z a=+z
Bf Cui Bp Chi Bp Cub Bp Cui Bp G Bp Chi
0.0 | (0,0,0) 21+x1 01-x1 31+xRR_, | 02—y 424+yR 4R, | 03-2z1
0.1 | (L,0,0) 0.0+x1 11+x R ,Rix | 33+zR3 Ry | 02+xRy; 43+zR_; 03+xR_y
02 | (0,L,0) 224y Ry, 0.1+yR_; 0.0+y 1 13+2z Ry 41+xR%,Ry | 03+y Rix
03 | (0,0,L) 23+z R, 0.1+2z R4y 32+y Ry 02+2z R_y 0.0+z1 1.2+ y Ry
1.0 | (0,3L,0) 22-xR%, 11—x1 52+y1 12—yl 33-xRyRy; | 1.3-2z1
1.1 | (L,3L.0) 1.04+x1 0.1+xR%,R;y | 51+xR_; 1.2+x Ry, 32-xRL,R:y | 13+xR,
1.2 | (0,4L,0) 20-xR%, 1.1+y R 1.0+y1 0.3+2z Ry 30-xRyRy; | 134y Rix
1.3 | (0,3L,L) 23-xRL,R | 1.1+zRy, 5342z Ry 124z R, 1.0+2z1 02+y Ry
2.0 | (3L,0,0) 12-xR2, 21-x1 53—-xRiRyy | 22-y1 40-x Ry 23-z1
2.1 | (4L,0,0) 20+x1 00-x1 50-xRiRyy | 22+x Ry, 43-xR_, 23+xR.y
22 | GBLL,0) 1.0-x RZ2, 21+yR_; 20+y1 02-xR_; 42-x Ry 23+y Rix
23 | (3L,0,L) 13-xR,R, | 21+2z Ry, 52-xR2,R; | 22+zR 20+z1 03—xRyy
3.0 (3L,3L,0) 12—z RyyRyx 31—-x1 40—z Ry 32—yl 51—z Riy 33—-z1
3.1 | (4L,3L,0) | 3.0+x1 00—y R Riy | 41—z R 32+x Ry 50-zR%, 33+xRey
32 | BLA4L0) | 1.1-zRL,Ry | 31+y R 3.04y1 03—y Ryy 52-zRi,R; | 33+y Rix
33 | 3L3LL) | 1.0-zRiyRix | 3.14+2zRyy 42—z Ry 3.2+2z Ry 30+z1 0.1—y R%,Ryx
40 | (6L,0,0) 20—z Ryy 41—x1 50—y R4,Ryy | 42-y1 3.0-y Rix 43—z1
41 | (7L,0,0) | 4.0+x1 02-zRL,Ryy | 53—y RL,Ryy | 42+x Ry, 31—y Rix 43+xR_y
42 | (6L,L,0) 22—z Ryy 41+y R, 40+y1 00—z RiyR:y | 33—y Ry 43+y Rix
43 | (6L,0,L) 21—z Ryy 41+2z R4y 51—y RL,R:y | 42+2z R 40+z1 01—z Rz
50 | (6L,3L,0) | 21—y R;Rsx | 5.1—x1 40—y RL,Ryy | 52—yl 31-zR%, 53—-z1
5.1 | (7L,3L,0) | 5.0+x1 11—y Ry, 43—y RL,R:y | 52+x Ry, 3.0-zR%, 53+x Ry
52 | (6L,4L,0) | 23—y RL,R:; | 5.1+yR_; 504y 1 10—yl 32-zR3,R; | 53+ Rix
53 | (6L,3L,L) | 20—y R;Rix | 5.1+2zRyy 41—y RLRyy | 5.2+2z Ry 50+z1 13—y Ry
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